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An entirely reverse-engineered finite element model
of a classical guitar in comparison with experimental dataa)

Alexander Brauchler,b) Pascal Ziegler, and Peter Eberhardc)

Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, Stuttgart, 70569, Germany

ABSTRACT:
The classical guitar is a popular string instrument in which the sound results from a coupled mechanical process.

The oscillation of the plucked strings is transferred through the bridge to the body, which acts as an amplifier to

radiate the sound. In this contribution, a procedure to create a numerical finite element (FE) model of a classical

guitar with the help of experimental data is presented. The geometry of the guitar is reverse-engineered from com-

puted tomography scans to a very high level of detail, and care is taken in including all necessary physical influen-

ces. All of the five different types of wood used in the guitar are modeled with their corresponding orthotropic

material characteristics, and the fluid-structure interaction between the guitar body and the enclosed air is taken into

account by discretizing the air volume inside the guitar with FEs in addition to the discretization of the structural

parts. Besides the numerical model, an experimental setup is proposed to identify the modal parameters of a guitar.

The procedure concludes with determining reasonable material properties for the numerical model using experimen-

tal data. The quality of the resulting model is demonstrated by comparing the numerically calculated and experimen-

tally identified modal parameters. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005310
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[Editor: Vasileios Chatziioannou] Pages: 4450–4462

I. INTRODUCTION

The human fascination with music and musical instru-

ments is as old as humankind itself. Some instruments, like

the violins made by Stradivari or the guitars made by

Torres, have delighted musicians and audiences for centu-

ries. Many among them are still of the opinion that the

sound of these instruments is unmatched by the work of con-

temporary luthiers, albeit recent studies reported that even

trained musicians did not necessarily choose old master

instruments over new ones (Fritz et al., 2012; Saitis et al.,
2012). Nevertheless, musicians are able to distinguish

between instruments by the subtle differences and, thus,

even seemingly equal instruments differ in their sounds. In

science, an increasing number of numerical models are used

with the aim to enhance the understanding of the physical

processes in the instruments and explain these subtle differ-

ences between the instruments. One popular string instru-

ment is the classical guitar, in which the sound results from

a coupled mechanical process. The oscillation of the

plucked strings is transferred through the bridge to the guitar

body, which interacts with the enclosed and surrounding air

to radiate the tone of the instrument.

Numerical modeling of string instruments and, specifi-

cally, guitars emerged several decades ago with the model-

ing of the strings. Beginning with the one-dimensional wave

equation to simulate the oscillation of an isolated string (see

Hiller and Ruiz, 1971), models have been extended by bend-

ing the stiffness to incorporate the effect of dispersion, and

sophisticated damping models have been developed

(Ducceschi and Bilbao, 2016; Woodhouse, 2004a,b). Recent

string models, in good agreement with the measurements,

are even able to predict contact between a string and the

frets of an electric bass or simulate the coupling between the

different polarizations of the transversal string oscillation

(Brauchler et al., 2020a; Issanchou et al., 2018).

In parallel, numerical models for the instrument’s body

have been developed. Different modeling approaches, like

finite difference models (Bader, 2006), models using spec-

tral methods (Derveaux et al., 2003), or multibody models

(Caldersmith, 1978; Christensen, 1982; French, 2007; Popp,

2012), have been evaluated. The most applied method is,

however, the finite element (FE) method, which, in the

beginning, has been used to examine the influence of the

soundboard’s thickness (Richardson and Roberts, 1983).

Further studies modeled and analyzed the guitar sound-

boards in different states during the production process

(Elejabarrieta et al., 2000), and the influence of the fluid-

structure interaction between the guitar body and enclosed

air has been quantified (Ezcurra et al., 2005). Exploiting

symmetries in the model can make the simulation procedure

more efficient and even the sound radiation is calculated

(B�ecache et al., 2005; Stanciu et al., 2019). Besides that, FE

models are used for sound synthesis and to support the

design process of the instruments (Torres and Boullosa,

2009; Torres et al., 2020; V€alim€aki et al., 2006). Current

models assist the conservation of old instruments with high

cultural value (Konopka et al., 2017; Viala et al., 2020) and

a)This paper is part of a special issue on Modeling of Musical Instruments.
b)Electronic mail: alexander.brauchler@itm.uni-stuttgart.de, ORCID: 0000-

0002-2359-4206.
c)ORCID: 0000-0003-1809-4407.
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due to good agreement with the measurements, can be used

as virtual prototypes (Tahvanainen et al., 2019).

To validate these numerical models, generally, transfer

functions and modal parameters, such as eigenfrequencies

and mode shapes, are compared with experimentally identi-

fied ones (Brauchler et al., 2020b; Tahvanainen et al.,
2019). The modal parameters of a structure can be identified

via experimental modal analyses (Ewins, 2000). In a modal

analysis, the structure is normally excited by an impulse

hammer or electrodynamical shaker and the input force, as

well as the oscillation of the structure, is measured usually

by force sensors and accelerometers. Particularly interesting

for sensitive musical instruments are the completely contact-

less excitation and measurement methods and operational

modal analyses. An instrument can be excited by a loud-

speaker or simply by plucking its strings, and the velocity

on the surface may be measured by a laser Doppler vibrome-

ter (LDV) as was previously done for the isolated instrument

parts or a complete concert harp (Chomette and Le Carrou,

2015; Viala et al., 2018). Moreover, experimental

approaches are applied to develop methods to evaluate the

quality of the instruments and influence of the different

types of wood (Boullosa, 2002; �Sali and Kopač, 2000;

Torres and Torres-Mart�ınez, 2015).

Although there are all of these research efforts, some

details of the old master instruments still remain uncharted.

With the growing computational power, it might now be

possible to identify unknown parameters of such old, valu-

able instruments while being completely nondestructive.

The research question the authors propose is, consequently,

to create a numerical model of a classical guitar with such a

high level of detail that it will be possible to noninvasively

identify unknown material parameters of an existing

instrument.

In this contribution, a procedure is presented to create a

geometrically and physically highly detailed FE model of an

existing instrument using computed tomography (CT) with-

out harming the instrument in any way. The model contains

multiple orthotropic materials and takes the fluid-structure

interaction between the guitar body and enclosed air into

account. Furthermore, an experimental setup is developed

and an experimental modal analysis is conducted, resulting

in reliably identified modal parameters of the existing instru-

ment. Finally, the modal parameters of the numerical model

and the parameters identified with the experimental modal

analysis are compared, and a parameter identification proce-

dure is proposed to determine the unknown material proper-

ties of the instrument under investigation. The model might

be used to gain further insight into already existing, possibly

very old, and expensive instruments. Although other

researchers used CT scans to model the musical instruments,

e.g., Pyrkosz (2013), to the authors’ knowledge, a

completely reengineered model for a classical guitar to the

presented level of detail does not yet exist. The suggested

procedure to reverse-engineer a FE model from an existing

instrument might guide further researchers to create detailed

numerical models of string instruments and is briefly repre-

sented in Fig. 1.

II. REVERSE-ENGINEERING A VIRTUAL GUITAR

The instrument under investigation is a decent, mid-

priced classical guitar of type Yamaha GC-12 (Hamamatsu,

Japan). It is made completely of solid wood with a cedar top

and mahogany back and sides, and the applied bracing pat-

tern is a slightly unsymmetric Torres bracing as can be seen

in Fig. 2. In the following, the modeling procedure with the

help of CT scans and the attributes of the numerical model,

including multiple orthotropic materials and the fluid-

structure interaction, are described. The FE modeling and

FIG. 1. Flow chart of the proposed reverse-engineering procedure.

FIG. 2. (Color online) Comparison between the CT scan (left) and geometry

model (right) of the guitar soundboard’s bracing pattern. The material coordi-

nate systems are included for the soundboard and two struts as an example.
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simulations are performed with the commercial software

ABAQUS, and for details on the FE backgrounds, the reader

is referred to the ABAQUS reference (Abaqus, 2014).

A. Geometry modeling

Modeling the geometry of an existing guitar can be an

elaborate task. Although measuring the geometry of the

parts that are visible from the outside is straightforward, it is

difficult to measure the details of the bracing pattern inside

the guitar body by hand through the soundhole. Unlike

many technical systems, a guitar cannot simply be disas-

sembled to measure the position and shape of the parts

inside without expecting a different behavior after gluing

the parts back together. To avoid harming the instrument by

disassembling or erroneous measurements by gauging

through the soundhole, the CT scans of the guitar body have

been made in cooperation with the Department of

Diagnostic and Interventional Radiology of the Klinikum
Stuttgart (Germany). Briefly, CT is an imaging technique

that makes use of multiple x-ray measurements taken from

different angles, either by rotating the x-ray source (as has

been done here) or the specimen to be measured to generate

cross-sectional images of the specimen (Buzug, 2011). With

this procedure, cross-sectional images of the guitar body in

all three dimensions have been generated with a distance of

0.6 mm in between each image and a resolution of approxi-

mately 0.5 mm. In total, around 2000 images have been

evaluated and used to take measurements to create the geo-

metric model of the guitar.

One such image representing a cross section that is par-

allel to the top of the guitar directly beneath the soundboard

is displayed in Fig. 2. From this image, it is possible to

extract the bracing pattern as well as the width of the 11

struts on the soundboard and other visible parts like the sup-

port of the bridge and connection with the neck. The bracing

pattern on the soundboard and back of the guitar have a cru-

cial influence on the oscillation behavior and, hence, on the

sound of the instrument. On the one hand, the bracing is

necessary to reinforce the soundboard to withstand the

forces exerted by the strings, and on the other hand, it is a

design parameter for luthiers to influence the eigenfrequen-

cies and mode shapes of the instrument. The extracted pat-

tern of the soundboard used for the FE model is shown on

the right-hand side of Fig. 2. The largest difference between

the two images remains the soundhole, which is not visible

in this cross-sectional image from the CT, which was taken

beneath the soundhole.

As all of the struts are unique in their size and shape,

they need to be modeled one by one using cross-sectional

images. In Fig. 3, as an example, the cross-sectional images

used to model the middle strut on the back of the guitar can

be compared to the resulting model of the part. Although it

is visible that the resolution of the images is not perfect

when looking at the cross section of the strut, the resulting

geometry for the FE model is still satisfyingly similar.

Additionally, it is possible to distinguish between the

different types of wood and, hence, between the parts. The

mahogany of the guitar’s back plate is denser and, therefore,

in the image, it is darker than the spruce of the strut. Even

the grain direction of the wood can be identified from the

images. This is crucial and results from the orthotropic

material behavior of the wood.

Figure 4 depicts a cut through the resulting model of

the guitar, consisting of 36 different parts, where the high

level of detail is visible. The geometric modeling procedure

is performed in ABAQUS with the necessity in mind that all

parts need to be meshable. Consequently, no further adjust-

ments on the parts geometries need to be made for the FE

model.

B. FE model

In the FE model, the 36 different parts are meshed indi-

vidually and then bound together via tie-constraints. These

tie-constraints bind the movement of the slave nodes rigidly

to those of their adjacent master nodes. Although this is an

idealization of the glued connections between the parts, it is

expected to yield reasonably good results (Tahvanainen

et al., 2019). The model contains shell elements whenever

applicable, leading to linear shell elements of ABAQUS

type S4 for the discretization of the soundboard, back, and

sides of the guitar. All other parts are discretized with the

linear volume elements of ABAQUS type C3D8 as indi-

cated in Fig. 4.

FIG. 3. (Color online) The CT scan cross-sectional image of the middle

strut on the back of the guitar (top) and corresponding geometric model

(bottom).

FIG. 4. (Color online) The cut through the resulting geometry of the FE

model.

4452 J. Acoust. Soc. Am. 149 (6), June 2021 Brauchler et al.

https://doi.org/10.1121/10.0005310

https://doi.org/10.1121/10.0005310


In addition, the five different wooden materials of the

distinct guitar parts are labeled. Whereas the majority of

parts, namely, the back, sides, neck, and headstock, are

made out of mahogany, the soundboard of the guitar is com-

prised of cedar. Additional parts are the ebony fretboard,

rosewood bridge, and struts and linings, which are made out

of spruce. Not yet included in the model are the strings and

machine heads of the guitar as the focus is set on the behav-

ior of the guitar body without any geometric stiffness effect

caused by the string forces exerted on the guitar. Hence, the

strings and machine heads are also dismounted during the

experimental studies.

The elastic material behavior of wood can be character-

ized as orthotropic. So, to describe the elastic behavior of

each wood type, three Young’s moduli EL, ET, and ER, three

shear moduli GLT, GLR, and GTR, and three Poisson ratios

�LT; �LR, and �TR need to be defined depending on the grain

direction and growth rings of the wood. The longitudinal

direction (index L) is defined along the fiber direction, and

the tangential (index T) and radial (index R) directions are

perpendicular to this depending, additionally, on the growth

rings (Kretschmann, 2010). This is an appropriate and useful

model, albeit material testing reveals that the elastic behav-

ior of wood is even more complex, yielding a nonsymmetric

compliance matrix in reality (Kretschmann, 2010). The elas-

tic material properties used in the FE model are summarized

in Table I. Due to a lack of data, the material properties per-

pendicular to the fiber direction in ebony and rosewood are

approximated to behave in a way that is similar to the other

wood types.

One mostly neglected but influential aspect is the var-

nish on the guitar, which is known to influence the longitu-

dinal and radial material properties as well as increase the

mass of the guitar through areal mass loading on the coated

parts (L€ammlein et al., 2020). Usually, the elastic properties

of wood tend to be linearly related to its density (Wegst,

2006). However, owing to the largely deviating influences

of the different varnish types and unknown type of varnish

on the examined instrument, the influence of the varnish on

the stiffness of the materials has to be neglected. On the

other hand, the mass increase, at least, can be approximated

by comparing the weight of the real instrument to the weight

calculated for its virtual counterpart. Weighing the instru-

ment under investigation without machine heads yields a

mass of mG ¼ 1432 g, the calculation of the mass of the FE

model, however, results in only mFE ¼ 1230 g. Because the

geometry of the model should be quite similar to that of the

real instrument, it is now assumed that the mass difference

has to be the result of the missing mass of the varnish and

erroneous density values from the literature, where the

wood density is known to vary significantly between differ-

ent specimens and different moisture content and can be cal-

culated as

mG � mFE ¼ mvarn þ
X

DqkVk; (1)

where the mass of the varnish is mvarn, the deviation of the

densities for the different sorts of wood is Dqk, and the corre-

sponding volumes are Vk. If it is now further supposed that

the varnish has a typical density of qvarn ¼ 1:2 kg=m3 and is

only applied on the soundboard (area, Asb ¼ 0:14 m2), the

back (Ab ¼ Asb), and the sides (As ¼ 0:134 m2) in a layer

with thickness d ¼ 0.3 mm, the total weight of the varnish

will sum up to mvarn ¼ 149 g. The resulting areal mass load-

ing of 360 g=m2 is quite high, but according to values from

the literature, it is still in a realistic range (L€ammlein et al.,
2020). This additional mass of the varnish is applied to the

FE model in a simplified manner by modifying the density of

the soundboard to qcedar ¼ 420 kg=m3 and the density of the

back and sides to qmahag ¼ 540 kg=m3. The total mass of the

guitar model, including the increased mass due to the varnish,

is mvFE ¼ 1380 g and, thus, fairly similar to the mass of the

real guitar.

Another very typical and highly influential physical

effect within guitars is the fluid-structure interaction

between the guitar body and enclosed air. Whereas in many

technical systems, the coupling of a vibrating structure with

the air can be described as a weak coupling, meaning an

essentially unilateral influence of the structure on the air,

and guitars yield a special case. The air cavity inside the

guitar with the opening of the soundhole can be character-

ized as a Helmholtz resonator having its first resonance fre-

quency very close to the first out-of-plane mode, often

referred to as the (0,0)-mode, of the guitar body (Fletcher

and Rossing, 1991). In combination with the thin and light

wooden plates constituting the guitar body, this leads to a

strong coupling between the structural guitar body and

enclosed air, which must not be neglected in any serious

guitar model.

The air cavity is included in the FE model by discretiz-

ing the cavity inside the guitar with linear, pressure-based

acoustic elements of ABAQUS type AC3D8. The complete

system of equations for the dynamics of the undamped sys-

tem with acoustic structural coupling is of the form

TABLE I. Material parameters for the different materials of the guitar model taken from Kretschmann (2010) and Gore (2011).

Material q ðkg=m3Þ EL (GPa) ET (GPa) ER (GPa) GLT (GPa)(GPa) GLR (GPa) GTR (GPa) �LT �LR �TR

Mahogany 420 10.7 0.534 1.18 0.630 0.939 0.224 0.641 0.297 0.264

Cedar 320 8.47 0.466 0.686 0.728 0.737 0.042 0.296 0.378 0.403

Spruce 400 11.9 0.511 0.927 0.725 0.760 0.036 0.467 0.372 0.245

Ebony 1100 17.6 0.880 1.76 1.23 1.58 0.352 0.3 0.35 0.35

Rosewood 775 13.5 0.700 1.40 1.00 1.30 0.30 0.3 0.35 0.35
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MF qFCT

0 MS

� �
€p
€u

� �
þ KF 0

�C KS

� �
p
u

� �
¼ 0; (2)

containing the mass matrices of the fluid MF and structure

MS, stiffness matrices of the fluid KF and structure KS, cou-

pling matrix C, and the pressure and displacement degrees

of freedom p and u. To characterize the air, values at 20 �C
are applied, namely, the density qF ¼ 1:2 kg=m3 and speed

of sound c ¼ 343 m/s. The calculation of the coupling term

follows from a nodewise application of

@p

@n
¼ �qF

@2

@t2
un; (3)

where n defines the normal direction and either the pressure

p is specified or the displacement in the normal direction un

of the boundary is prescribed, depending on which side of

the coupling is considered. In addition, on the free boundary

of the soundhole, acoustic infinite elements of ABAQUS

ACIN3D4 are applied to simulate a radiation condition into

an infinite domain, the details of which can be found, for

example, in Abaqus (2014 and Sigrist (2015). In total, the

degrees of freedom in the model sum up to 571 671.

To highlight the effect of the acoustic structural cou-

pling on the model behavior, the eigenfrequencies of the

fully coupled model are compared with those of the two

uncoupled systems. Therefore, in Fig. 5, the eigenfrequen-

cies of the coupled model, the uncoupled air model, and the

uncoupled structural model are depicted. Although the air

model has only one resonance in the displayed frequency

range up to 270 Hz, the Helmholtz resonance frequency, the

uncoupled structural model, has five eigenfrequencies in

that range. In the following, the coupling between the

Helmholtz resonance of the air and first structural modes is

interpreted. Nevertheless, the air model produces higher

order modes as well, which couple to higher order modes of

the structure. A strong influence of the coupling is clearly

visible when comparing the eigenfrequencies of the coupled

model to the other two models. Three of the five visible

eigenfrequencies are significantly different and a sixth

eigenfrequency is apparent. The coupling effect is even

more vivid when looking at the relative change of eigenfre-

quencies of the most similar modes between the uncoupled

and coupled structural models. The eigenfrequencies of

mode 1 and mode 3, the in-phase and out-of-phase (0,0)-

modes, respectively, decrease by more than 20% through

the physically required coupling. This strong effect on the

eigenfrequencies can be explained by the similar frequen-

cies of the Helmholtz mode of the air at 133 Hz and the

(0,0)-mode of the uncoupled structure at 137 Hz. Mode 2,

the first bending mode, and mode 4, the twisting mode, on

the other hand, are only slightly affected with a relative fre-

quency change below 5%. This is exactly what would be the

expected effect of the fluid-structure interaction as the

modes where fluid and structure are strongly interacting

show a large frequency change while the frequencies of the

modes with a low interaction of fluid and structure barely

change at all.

To sum up this section, a FE model of a classical guitar

has been created from CT scan images to a very high level

of detail. The five different kinds of woods are included in

the model with their orthotropic material properties and the

additional weight of the varnish is taken into account.

Furthermore, the model contains the fluid-structure interac-

tion between the guitar body and enclosed air, yielding an

influence in the model as expected in theory.

III. EXPERIMENTAL MODAL ANALYSIS

An experimental modal analysis of the guitar is per-

formed to serve as a reference solution against which the FE

model can be validated and compared. Comparing the

modal parameters, especially the eigenfrequencies and

mode shapes, is a reliable way to assess the similarity

between the model and reality. Additionally, the modal

damping ratios are identified, which are necessary to simu-

late the transfer functions and transients with the numerical

model realistically. They also help to gain further insight

into the specific instrument’s vibrational behavior. First, the

experimental setup and method used for the modal analysis

are described. Then, for the analysis, a method using the

complex mode indicator function (CMIF) and enhanced fre-

quency response functions (EFRFs) is used (Allemang and

Brown, 2006). This is followed by a summary of the experi-

mental results.

A. Experimental setup

The experimental setup shown in Fig. 6 consists of the

guitar hanging on springs from an aluminum frame as well

as an automatic impulse hammer and a scanning LDV. The

soft springs suspending the guitar are attached at the posi-

tion of the nut to realize approximately free boundary condi-

tions. Due to their significant weight of 160 g, the machine

heads were removed before the measurements to obtain

results comparable to the FE model. The design of the setup

FIG. 5. (Color online) (Left) The first eigenfrequencies of the air cavity

with rigid boundaries, the structural model without air, and the model with

acoustic structural coupling. (Right) The relative change of eigenfrequen-

cies of the model with an acoustic structural coupling compared to the

structure only model.
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makes it easily possible to turn the guitar around and

thereby measure the vibration on the front as well as on the

back of the guitar. This is an alternative to the application of

mirrors to measure the velocity on points around the com-

plete guitar with a LDV. The velocity at these predefined

points on the guitar is measured with a Polytec PSV-500

scanning LDV (Waldbronn, Germany), which allows for the

completely noninvasive measurement of the different points

on the guitar without moving the LDV.

The excitation of the guitar is realized via a modified

electrodynamical shaker that acts like an automatic impulse

hammer. During the measurement, the shaker is triggered by

a function generator with a short trigger signal, which leads

to a single hammering motion of the shaker. A soft rubber

tip is used to avoid possible damage to the guitar under test,

and the contact force is measured by an integrated circuit

piezoelectric (ICP) sensor. The shaker can be moved around

the guitar to accomplish multiple excitation positions.

B. Parameter identification method

With all of their advantages and disadvantages, a pleth-

ora of methods to identify the modal parameters of a system

through experimental modal analysis exists. The presented

experimental setup with the scanning LDV allows for mea-

surements at many different points. Due to its advantage of

making use of this fine spatial resolution of the measure-

ments, the CMIF, in combination with EFRFs, is used for

the modal analysis. In the following, the combined method

shall be briefly explained while a thorough description of

the method can be found in Allemang and Brown (2006).

It is supposed that the force input fkðtÞ and velocity out-

put vjðtÞ are measured at multiple positions and their Fourier

transforms are FkðxÞ and VjðxÞ. The input positions are

denoted k ¼ 1; 2;…;K and the output positions are denoted

j ¼ 1; 2;…; J. Accordingly, the matrix of mobilities YðxÞ,
which is a complex J�K matrix, is used to provide a basis

for the parameter identification with the modal analysis and

can be calculated in a piecewise manner from

Yjk xð Þ ¼ Vj xð Þ
Fk xð Þ : (4)

From the real part of YðxÞ, the CMIF is calculated

through a singular value decomposition at each considered

frequency, which results in

Re Y xð Þð Þ ¼ U xð ÞR xð ÞV xð ÞH; (5)

where UðxÞ is the real J� J matrix of left singular vectors,

VðxÞ is the real K�K matrix of right singular vectors, and

RðxÞ is the real J�K matrix of singular values. The super-

script “H” denotes the Hermitian of a matrix. For each refer-

ence (input position) k, one singular value can be calculated,

and these singular values at the considered frequencies,

then, form the CMIF

CMIFk xð Þ ¼ Rk xð Þ with k ¼ 1; 2;…;K: (6)

The resulting CMIF contains peaks for all of the modes

existing in the data and forms a vector with K entries at each

discrete frequency. It is advantageous over single mobilities

as, in contrast to a single mobility, all eigenfrequencies

occur as peaks in the CMIF, and even peaks very close to

each other in the frequency range can be reliably identified.

Consequently, frequencies at which peaks occur are used to

identify the modal parameters of the system.

After identifying the eigenfrequencies xr in the CMIF,

the left singular vectors urðxrÞ of dimension J � 1 and the

right singular vectors vrðxrÞ of dimension K � 1 at these

eigenfrequencies are used to transform the matrix of mobili-

ties into the modal domain and form a scalar EFRF,

�Yr xð Þ ¼ uT
r Y xð Þvr; (7)

for each mode. Note that the left singular vectors urðxrÞ are

often already quite good approximations for the mode

shapes of the system. If a sufficient spatial resolution of

measurements is ensured, the EFRFs will form a curve for

each mode without any influence of the neighboring modes.

FIG. 6. (Color online) The experimental setup for the modal analysis (left) and close-up of the suspension on the nut of the guitar (right).
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Then, standard single degree of freedom parameter identifi-

cation techniques are applicable to identify the modal

parameters with high precision for each mode separately

with the corresponding EFRF. In the presented case, a least

squares peak fitting method is applied on the EFRFs to iden-

tify the modal parameters (Ewins, 2000).

With the identified modal parameters, it is then possible

to reconstruct the EFRFs as separate single degree of free-

dom systems,

�Yrrec
ðxÞ ¼ r

�A

x2
r � x2 þ 2ixrxfr

; (8)

where r
�A are the modal constants of the EFRFs and fr are

the modal damping coefficients. Then, these reconstructed

EFRFs are transformed back into the physical domain and

summed up to form the reconstructed matrix of mobilities,

Yrec xð Þ ¼
XR

r¼1

ur
�Yrrec

xð ÞvT
r ; (9)

where R is the total number of identified modes in the con-

sidered frequency range and YrecðxÞ is of the same size as

YðxÞ. To process all of the discrete frequencies, these matri-

ces are stored as three-dimensional arrays of size

J � K � Nfreq, in practice, where Nfreq denotes the total num-

ber of discrete frequencies.

C. Modal analysis results

For the experimental modal analysis, a total of 452

mobilities were measured. These measurements are com-

posed of 133 points on the soundboard and fretboard and 93

points on the back of the guitar, where the velocity is mea-

sured with the LDV, resulting in the number of output posi-

tions J ¼ 226. Moreover, the number of excitation positions

is K ¼ 2, consisting of one input position on the bottom right

corner of the soundboard and one on the bottom right corner

of the back. Each measurement takes as long as T ¼ 0.8 s

with a time resolution of Dt ¼ 8� 10�5 s, resulting in a fre-

quency resolution of Df ¼ 1:25 Hz and a number of discrete

frequencies Nfreq ¼ 5000 for their Fourier transforms.

Longer measurements would result in zero-padding due to

the faded signal and are, therefore, avoided. The matrix of

mobilities for all discrete frequencies calculates to a three-

dimensional array with size 226� 2� 5000. The measure-

ment mesh is depicted in Fig. 15, and the excitation is

visible in terms of the positions where the measurement data

is missing due to the shadow of the shaker.

To evaluate up to which frequency range a parameter

identification is meaningfully possible, the input force signal

is consulted. In Fig. 7, the force signal for ten consecutive

measurements is displayed in the time and frequency

domain. First and foremost, the signal is well shaped with-

out any double hits, and the time in contact is about 1 ms.

The signal yields a very good reproducibility, and the force

is always below 2.5 N and, thus, sufficiently small to ensure

that the instrument is not harmed by the impulses. From the

curves in the frequency range, it can be further concluded

that frequencies up to 800 Hz are excited well as the signal

is always above �20 dB up to that frequency. The parameter

identification is even performed up to 1000 Hz as the LDV

is known to yield a very good signal-to-noise ratio and the

force signal at 1000 Hz is still slightly above �30 dB.

Figure 8 shows the CMIF calculated from the matrix of

mobilities in a frequency range up to 1000 Hz with the iden-

tified eigenfrequencies highlighted. Two curves are dis-

played, one being the first singular value at each frequency

point and the other is the second singular value at each fre-

quency point because two references are used. In the evalu-

ated frequency range, 41 eigenfrequencies are found. Most

of them are found in the first CMIF, and the density of

eigenfrequencies increases for higher frequencies as is

expected for guitars. At each of the highlighted eigenfre-

quencies, an EFRF is calculated and the parameter identifi-

cation is performed on these EFRFs. Furthermore, as several

peaks occur very close to each other in the frequency range,

e.g., the first two, the advantages of the CMIF/EFRF method

FIG. 7. (Color online) Ten consecutive hammer impact signals in the time

domain (top) and frequency domain (bottom).

FIG. 8. (Color online) The CMIF with identified eigenfrequency locations.
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may be emphasized here. Due to the projection with the sin-

gular vectors, these close peaks can be identified without the

influence of their neighbors as long as the spatial resolution

of measurements is fine enough. Hence, a very reliable and

transparent parameter identification for these close eigenmo-

des is yielded. For the sake of brevity, only the final results

of that procedure are presented hereafter.

An appraisal of the modal analysis results and, therefore,

the quality of the identified modal parameters is possible in a

straightforward manner by comparing the measured mobilities

with the mobilities reconstructed from the identified modal

parameters. Consequently, the measured and reconstructed

mobilities are confronted in Figs. 9 and 10 in magnitude and

phase, respectively, for two different input output combina-

tions. Figure 9 shows the mobility with the input on the front

and output on the soundboard closely below the bridge,

whereas in Fig. 10, the mobility with the excitation on the back

and velocity measurement on the upper middle part of the

back is displayed. Two general conclusions can be drawn up

front. First, the quality of the measurements is well suited for

the parameter identification up to 1000 Hz because even close

to 1000 Hz, no significant noise is visible, and the frequency

resolution is clearly sufficient. Second, the reconstructed mobi-

lities approximate the measurements remarkably well in mag-

nitude and phase, indicating a successful parameter

identification. The only clear deviation between the reconstruc-

tion and measurement is visible in Fig. 10 between 700 and

800 Hz, where the reconstructed phase is erroneous and the

damping ratio of two eigenfrequencies seems to be too high,

according to the width of the peaks. All in all, the identified

modal parameters should be well suited as the reference solu-

tion for the numerical model.

Additionally, the mobility in Fig. 9, especially, allows

for some interpretations about the instrument as the output

position below the bridge is where large parts of the sound

are radiated. Even better would be measurements with exci-

tation on the bridge, but these would spoil the identified

mode shapes as a result of the shadow of the shaker. The

mobility below the bridge has only one clear superelevation

at 300 Hz and two visible expunctions, one at 200 Hz and

one at 800 Hz. Apart from that, the mobility yields rather

constant values, arguing for an approximately constant

amplification throughout the frequency range.

Last but not least, the identified modal damping ratios

fr illustrated in Fig. 11 shall be evaluated. In the frequency

range up to 1000 Hz, the values for fr support the claim of a

constant damping ratio as they lie constantly between 0.5%

and 1%. Only four modal damping ratios lie significantly

above that between 1.2% and 1.5%. These particular modes

comprise both (0,0)-modes and it is, hence, reasoned that

these higher damping ratios might come because of sound

radiation rather than material damping.

To sum up, the experimental modal analysis not only

reveals valuable information about the guitar, like the con-

stant amplification and constant damping ratio over the fre-

quency range, but is also able to act in the form of

eigenfrequencies and mode shapes as a very reliable refer-

ence solution to compare the numerical model to.

IV. COMPARISON OF SIMULATION AND EXPERIMENT

So far, a detailed FE model that can meaningfully pre-

dict the acoustic structural coupling in the guitar body has

FIG. 9. (Color online) The magnitude (top) and phase (bottom) of the

mobility excited on the soundboard and measured below the bridge on the

soundboard.

FIG. 10. (Color online) The magnitude (top) and phase (bottom) of the

mobility excited on the back and measured on the upper middle part of the

back.

FIG. 11. (Color online) The identified modal damping ratios fr .
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been proposed. Additionally, modal parameters of the guitar

under investigation have been identified via experimental

modal analysis with a high level of reliability. In the follow-

ing, the numerical model results are compared to the experi-

mental results, and the numerical model is enhanced by

identifying the material parameters of the specific guitar.

A. Results with initial material parameters

To validate the FE model, the experimentally identified

modal parameters are compared to those calculated with the

FE model. The modal assurance criterion (MAC) is often

used to indicate the similarity of a mode pair consisting of

an experimentally identified mode i and a numerically cal-

culated mode j. The MAC values are calculated as

MACij ¼
jwH

i ujj2

wH
i wiu

H
j uj

; (10)

where wi is the mode shape of the measured, experimental

mode i and uj is the mode shape of the computed, numerical

mode j. The MAC values always lie between zero, meaning

complete orthogonality of modes, and one, meaning exact

conformity of the compared modes (Allemang and Brown,

2006). In most cases, the experimental mode shape vectors

are evaluated at far fewer positions than the numerically cal-

culated vectors due to the very fine FE mesh. Therefore, to

make the evaluation of the MAC possible, the numerical

mode shape vectors uj are evaluated only at the closest FE

nodes to the points measured with the LDV on the guitar.

In Fig. 12, the MAC matrix comparing the first 15

experimental modes with the first 15 numerical modes is

displayed in the shape of a heatmap. Several mode pairs

(experimental mode, numerical mode) can be correlated

without any doubt, like the mode pairs (1,1), (2,2), (5,5),

and (6,6), yielding unambiguous MAC values above 0.9.

Still obvious are the pairs (4,3) and (7,8), which yield MAC

values above 0.7. The modes above the eighth mode, alas,

cannot be reproduced by the current configuration of the

model. Due to the detailed modeling process, the most sig-

nificant model error is expected to be induced by the mate-

rial parameters taken from the literature, which are known

to yield a relatively high uncertainty (Kretschmann, 2010).

The influence on density and stiffness caused by the varnish

further increases this uncertainty (L€ammlein et al., 2020).

Therefore, it is accounted to be reasonable to identify the

material parameters of the guitar in a range of 630% around

the literature values.

B. Identification of material parameters

Identifying the material parameters for the guitar model

is not regarded as a straightforward problem as the parame-

ter space comprises 54 independent material parameters.

This number results first from four materials with volumet-

ric elements each having ten independent material parame-

ters [mahogany (neck, head), spruce (bracing), ebony

(fretboard), and rosewood (bridge)]. Second, the two regions

discretized with shell elements each account for seven addi-

tional material parameters [cedar (soundboard), mahogany

(back, sides)]. Furthermore, the literature values do not

seem to be a good starting point for a gradient-based proce-

dure as too many modes differ significantly between the

experiment and numerical models. Thus, instead of a

gradient-based numerical optimization, the material parame-

ters are identified via a structured sampling of the parameter

space using a Sobol sequence. Sobol sequences are quasi-

random sequences to form successively finer uniformly dis-

tributed points in an s-dimensional unit hypercube (Sobol

et al., 2011). They yield the advantage to cover the space

well already with a limited number of parameter sets.

A further necessary step is to reduce the number of

independent parameters. This is achieved by eliminating all

Poisson ratios from the parameter vector because of their

relatively small influence on the modal parameters and by

assuming the stiffness parameters of each material to vary

uniformly such that

ELm
ðpÞ

E0
Lm

¼ ETm
ðpÞ

E0
Tm

¼ ERm
ðpÞ

E0
Rm

¼ GLTm
ðpÞ

G0
LTm

¼ GLRm
ðpÞ

G0
LRm

¼ GTRm
ðpÞ

G0
TRm

(11)

holds for each material m. The superscript “0” denotes the

initial parameters. Hence, for each material m, only two

independent parameters

pm ¼ pq
m; pstiff

m

� �
(12)

remain, where pq
m is the change of density and pstiff

m is the

change of the Young’s moduli and shear moduli. This

results in a parameter space containing 12 independent

FIG. 12. (Color online) The MAC matrix to numerically compare experi-

mentally identified and simulated modes (values rounded to one significant

digit).
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parameters for the sampling process. To evaluate the results

for the different parameter sets p, the objective function,

e ¼
XR

r¼1

xExp
r � xr pð Þ

xExp
r

 !2

þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MACrr pð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MACrr pð Þ

p
 !2

2
4

3
5;

(13)

is proposed to rate the eigenfrequency and mode shape devi-

ation for each mode r. The resulting optimization problem

reads

p� ¼ arg min
p2P

e pð Þ

with P ¼ p 2 R12 j 0:7p0 � p � 1:3p0

� �
; (14)

where the initial parameter values are denoted as p0.

A total of 2000 samples with parameter sets from a

Sobol sequence were calculated and in the following, the

best result corresponding to Eq. (14) is investigated. It is

worth mentioning that the presented parameter set is not an

optimal parameter set but the most reasonable parameter set

out of 2000 candidates. The resulting parameters are

included in Table II, and the relative deviation to the initial

values is laid out in Fig. 13. Most of the parameters changed

significantly compared to the initial values, and clear ten-

dencies can be drawn from Fig. 13. The soundboard, bridge,

and bracing became lighter and stiffer. The opposite is the

case for the neck and fretboard, which became heavier and

less stiff. Furthermore, the weight and stiffness of the back

and sides increased. The total mass of the model with the

updated parameters calculates to muFE ¼ 1470 g, which is

40 g heavier than the actual guitar. Thus, all of the parame-

ters are considered to lie in a reasonable range, and the total

weight of the guitar model is even 10 g closer to the actual

value than it was initially; see Sec. II B. It is worth mention-

ing that multiple local minima exist for the optimization

problem, and the solution is close to one of those local min-

ima. With the presented method, it is, hence, not guaranteed

that the global minimum is found. Even if the global mini-

mum was found, the results still might not necessarily reflect

the actual material properties of the instrument under inves-

tigation as other modeling assumptions might lead to a dif-

ferent global minimum.

The numerical results for the modal parameters

obtained with the updated material parameters are remark-

able, especially for the mode shapes. The first 14 mode

shapes occur in the correct order, and all yield MAC values

above 0.7 as depicted in Fig. 14, indicating very similar

mode shapes in the simulation and experiment. This result is

corroborated with Fig. 15 in which three experimentally

identified modes and three associated numerically calculated

modes are displayed. Even the 13th modes look practically

TABLE II. Identified material parameters for the different parts of the guitar body.

Part Material q ðkg=m3Þ EL (GPa) ET (GPa)(GPa) ER (GPa) GLT (GPa) GLR (GPa) GTR (GPa)

Neck, head Mahogany 463 7.66 0.382 0.844 0.451 0.672 0.160

Back, sides Mahogany 656 12.4 0.619 — 0.730 1.09 0.260

Soundboard Cedar 328 9.85 0.542 — 0.846 0.857 0.049

Bracing Spruce 387 15.3 0.657 1.190 0.933 0.978 0.046

Fretboard Ebony 1310 14.7 0.734 1.470 1.030 1.320 0.294

Bridge Rosewood 609 15.8 0.820 1.64 1.17 1.52 0.351

FIG. 13. (Color online) Relative difference of updated parameters (see

Table II) to initial ones (see Sec. II B).

FIG. 14. (Color online) The MAC matrix to numerically compare the

experimentally identified and simulated modes with updated parameters

(values rounded to one significant digit).
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similar, still yielding a MAC value of 0.8. The visible mesh

displays the points measured with the LDV. Both the mea-

surements and FE model results are evaluated at these points

or at the nearest node to that in the FE model. The missing

corners in the representations are caused by the shadow of

the shaker that excited the guitar in the experiment.

Moreover, the eigenfrequencies of the numerical model

are very close to the experimentally identified eigenfrequen-

cies as can be seen in Fig. 16. Therefore, the correspondence

is very satisfying not only for the mode shapes but also for

the eigenfrequencies. However, especially the higher fre-

quencies seem to be systematically lower in the numerical

model. This might correspond to the overall higher mass of

the numerical model compared to the actual guitar.

Considering the presented results, the modeling proce-

dure and parameter identification are deemed highly suc-

cessful. It is possible to identify the material parameters in a

realistic range such that the numerical model reproduces the

experimentally identified modal parameters in a frequency

range up to 500 Hz very well. The deviation, which still

occurs, might be explained by the slightly overestimated

mass of the model and the reduced parameter vector for the

parameter identification procedure.

V. CONCLUSION

A comprehensive reverse-engineering procedure to cre-

ate a detailed FE model of an existing classical guitar is pro-

posed. The most influential factors of such a model are

identified and methods to include them are suggested. First,

the detailed reconstruction of the geometry is possible with

CT scans of the instrument. Second, the fluid-structure inter-

action between the guitar body and enclosed air is included

in the modeling procedure. Additionally, the orthotropic

material properties taken from the literature are enhanced to

account for the weight increase due to the varnish. To vali-

date the model and, hence, the reverse-engineering proce-

dure, a modal analysis technique using the CMIF is used,

which has proven to deliver reliable results to act as a

FIG. 15. (Color online) The confrontation of corresponding experimentally identified (left) and numerically calculated (right) eigenmodes.

FIG. 16. (Color online) The eigenfrequencies of the corresponding modes

calculated numerically and identified experimentally.
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reference solution. Using the experimental results, it is

shown that it is possible to identify the material parameters

for the whole instrument in a realistic range such that the

model reproduces the modal parameters of the actual instru-

ment in a frequency range up to 500 Hz. However, the iden-

tified material parameters cannot be interpreted as the actual

material properties of the instrument under investigation as

the parameters only represent one of multiple possible

parameter sets.

All in all, the proposed procedure is well suited to cre-

ate high-fidelity FE models of existing instruments. The pre-

sented model will not only be of use to simulate the

influence of the modifications on the instrument but as a

result of its high fidelity, it will also be used to develop fur-

ther parameter identification strategies or gain further

insight into the physical behavior of classical guitars in

general.
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