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Constraint programming is well suited for the computational modeling of music theories and composition: its
declarative and modular approach shares similarities with the way music theory is traditionally expressed,
namely by a set of rules which describe the intended result. Various music theory disciplines have been
modeled, including counterpoint, harmony, rhythm, form, and instrumentation. Because modeling music
theories “from scratch” is a complex task, generic music constraint programming systems have been proposed
that predefine the required building blocks for modeling a range of music theories. After introducing the field
and its problems in general, this survey compares these generic systems according to a number of criteria
such as the range of music theories these systems support.
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1. INTRODUCTION

Musicians and computer scientists alike have been fascinated by the modeling of
music composition with computer programs for decades. The Illiac Suite [Hiller and
Isaacson 1958]—a computer-generated composition for string quartet—testifies that
this research field is almost as old as computer science. The computational modeling
of music theories is interesting for multiple reasons. For musicians, the computational
modeling helps to a better understanding of music theories. The resulting programs
can serve as tools for computer-aided composition. For computer scientists, modeling
music is interesting as the requirements of this domain can lead to new computational
models and languages.

In the field of computer-aided composition (CAC, also known as algorithmic com-
position) composers formalize their musical intentions and implement these formal
specifications as computer programs. These programs output music, and the composers
then use this output in their pieces, possibly after manually editing it. Systematic
surveys of techniques in CAC—with historical annotations—are provided by Roads
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[1996], Miranda [2001], and Taube [2004]. Assayag [1998] outlines the history of
computer-aided composition. Papadopoulos and Wiggins [1999] offer a systematic
overview with a focus on systems based on techniques from artificial intelligence. Berg
[2009] surveys seminal algorithmic composition systems.

For centuries, explicit knowledge about music composition has been expressed by
the means of rules. More than 1000 years ago, rules had been used already to describe
the composition of an organum (an early polyphonic form) in the anonymous treatise
Musica enchiriadis (about 900). Naturally, rules alone are not sufficient; they should
be complemented by examples. Yet even today, rules are an important device when
describing a musical style or when teaching the craft of composition.

Rules are well suited to describe music for two reasons: they are declarative, and
they describe the multidimensional nature of music in a modular way. Firstly, rules are
declarative in the sense that they rarely specify procedurally how to create a certain
result. Instead, they only describe important features that the intended result should
display. Secondly, the formalization of a task as complex as composition is greatly
simplified when the task is stated in a modular way. When the task description is
broken down into rhythmic rules, melodic rules, rules on the harmony and so forth,
then the various musical dimensions are formalized one by one.

Because rules are such a long-established concept, programming approaches that
support rule-like programming constructs have attracted much attention among com-
posers and scholars for modeling music composition. These approaches translate the
advantages of rules into the world of computer programming: implementing music
theory models becomes declarative and modular.

As rule-based approaches are declarative, they free programmers to concentrate on
what they want to do in a musical sense, that is, they do not need to define how to
achieve this outcome. By contrast, it is very difficult to computationally model music
theories by a procedural programming approach where the programmer details how
to obtain a certain result. In addition, changing or adding a single rule can require
redesigning the entire procedural program. These difficulties are shared by object-
oriented programming, for that matter.

Another advantage of using rule-based approaches lies in the fact that music theory
models are defined in a modular fashion. Multiple rules can even affect the same
parameter value. For instance, a music theory model may restrict the note pitches of
a score by melodic rules on the one hand and by harmonic rules on the other. Each of
these separate rules affect the same parameter values, namely the pitches. However,
no rule necessarily determines the parameter values fully. Search finds one or more
solution that fulfils all rules.

Constraint Programming (CP) has proven a particularly successful programming
paradigm for realizing ruled-based systems (another paradigm is logic programming).
The attraction of CP is easily explained. CP allows users to model complex problems
in a simple way. A problem is stated by a set of variables (unknowns) and constraints
(relations) between these variables. In this article, we use the term rule for the music
theoretical concept and the term constraint for its implementation by CP.

From a constraint programming research point of view, music is a challenging ap-
plication domain. The complexity of music can be compared to the complexity of lan-
guage, yet the modeling of both domains requires different approaches [Lerdahl and
Jackendoff 1983]. A special music-related issue of the Constraints journal [Pachet and
Codognet 2001], and a Musical Constraints Workshop that was part of the 7th Inter-
national Conference on Principles and Practice of Constraint Programming in Cyprus
(CP’2001) underline how music appeals to computer scientists.

Addressing the requirements of music can lead to new programming languages. For
example, in order to realize his Bach harmonization system CHORAL in an efficient
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X + Y = 7 ∧ X < Y

Fig. 1. A simple CSP example; possible problem solutions are X = 3, Y = 4 and X = 1, Y = 6.

way (Section 3.3), Ebcioglu [1987] first designed and implemented BSL (Backtracking
Specification Language), a logic programming language that is fundamentally different
from Prolog. There is a simple mapping that translates a BSL program to a formula
of first-order predicate calculus. Executing a BSL program amounts to proving its
corresponding first-order formula. While Prolog implements the backtracking search
strategy, BSL uses backjumping for reducing the search space (Section 4.1.4).

Constraint programming research for music modeling can also lead to novel computa-
tional models. PiCO [Rueda et al. 2001] is a calculus that integrates concurrent objects
and constraints as primitive notions. This calculus is intended as a precise formal foun-
dation for composition systems, because constraints and objects model two important
approaches for constructing musical structures. This research also developed Cordial
[Rueda et al. 1997], a visual programming language that shares semantics with PiCO.
Another example is the ntcc calculus [Palamidessi and Valencia 2001] that extends the
temporal concurrent constraint calculus tcc [Saraswat et al. 1994] by nondeterminism
and unbounded finite delay. The design of the ntcc calculus was inspired by the re-
quirements of musical applications [Rueda and Valencia 2004]. Nevertheless, instead
of focusing on underlying programming models and languages, this article details the
(range of) music theories supported by existing systems.

Plan of Article

The rest of this article is organized as follows. Section 2 provides a brief and informal
introduction to CP. A wide range of existing musical constraint problems is outlined in
Section 3, which sketches the common music theory disciplines, and surveys research
that implements specific music theories. A number of systems allow users to implement
their own music theories. These systems are described in Section 4; in Section 5 they
are compared according to orthogonal evaluation criteria that indicate, for example,
the range of music theories these systems support. The article ends with a conclusion
(Section 6).

2. WHAT IS CONSTRAINT PROGRAMMING?

Constraint programming [Apt 2003; Dechter 2003] is a programming paradigm that
introduces techniques to solve constraint satisfaction problems. A Constraint Satisfac-
tion Problem (CSP) consists of a set of variables and mathematical relations between
these variables which are referred to as constraints. Usually, a CSP presents a com-
binatorial problem. A constraint solver finds one or more solutions for the problem. A
solution of a CSP shows for each variable of the problem a determined value that is
consistent with all constraints. A constraint programming system (abridged: constraint
system) allows its user to define and solve CSPs.

A simple numeric example may illustrate these concepts (Figure 1). The example
introduces the two variables X and Y and restricts their value by two basic arithmetical
operations, connected by a conjunction.1

Note that the term variable has a clearly different meaning in mainstream program-
ming paradigms and languages (e.g., C or Java) on the one hand, and in the field of CP
on the other hand. In mainstream programming languages, a variable denotes a state-
ful computational entity: such a variable has always a specific value and a program can
alter the value of a variable with an assignment statement at any time. By contrast,

1As a convention, constrained variables are written with upper-case letters.
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in CP the notion of a variable is more similar to the notion of a variable or unknown in
mathematics. More specifically, a variable in CP is similar to a variable in first-order
logic [Kelly 1997]. The value of a variable may be unknown or partially known. For
example, it may only be known that X ∈ {1 . . . 10}. However, a variable never changes
its value; it is stateless.2 The remainder of this text will always use the term variable
in this latter meaning.

Sometimes, the term constrained variable will be used to explicitly denote a variable
in the context of CP. A constrained variable is a variable that has a domain, that is
a set of values it may take in a solution. Some constraint systems support variables
with an infinite domain (e.g., the domain of all real numbers in some interval).
Nevertheless, in all systems surveyed in this text, the domain of a variable is a finite
set of potential variable values. The values in the domain are often all of the same
type (e.g., Boolean domain, integer domain, or domain of finite sets of integers), while
other systems support domains with mixed types.

In principle, constraints can be arbitrary mathematical relations. Examples include
numerical relations, set relations, logic relations, and tree or graph relations. Con-
straint systems predefine a set of constraints and often allow the user to extend
this set.

A CSP does not necessarily result in only a single solution. Instead, the restrictions
and dependencies expressed by a set of constraints reduce the set of solution candidates.

Existing constraint systems can efficiently solve CSPs, a fact that has greatly con-
tributed to the popularity of CP. Because the search space—that is the set of (partial)
solution candidates—of a CSP is often huge, an efficient constraint solver has great
impact on the usability of a constraint system.

There exists much literature on CP. For example, Apt [2003] provides a general
overview of the field with many CSP examples. Frühwirth and Abdennadher [2003]
survey different CP approaches and systems. Dechter [2003] primarily explains how
constraint solvers find solutions. A collection of surveys covering the full breadth and
depth of the CP research field is presented in Rossi et al. [2006]. Finally, a less formal
introduction into the field is given in the Web tutorial by Bartak [1998], which also
links to further resources such as related journals, conferences, Web links, etc.

3. MUSICAL CONSTRAINT SATISFACTION PROBLEMS

Using CP, a composition task is stated by: (i) a music representation in which some
musical aspects are unknown (and therefore represented by variables) and (ii) con-
straints that restrict these variables. For instance, a chord can be expressed by a set of
notes, and the note pitches can be variables. Some harmonic constraints may specify
how the chord pitches are related to each other, other constraints define the relation to
the pitches of other chords and so forth.

A musical CSP implements a model of a music theory that describes certain musical
aspects such as the rhythm, harmony, the formal structure, or the instrumentation.
The theory model does not necessarily need to be consistent with any existing musical
style. For instance, a composer may develop some musical CSP (and implicitly define a
theory model) in an ad hoc manner in order to generate some subpart of a composition
in a novel style. However, the music theory model must be fully formalized (e.g., fully
expressible in mathematical notation). When a musical CSP is solved, the variables
in the music representation are determined in a way that complies with the modeled

2Even if the domain of a variable will be reduced during the search process, the domain will not change in
any other way. Yet, in the actual implementation of some systems discussed in what follows the concept of
the variable and its domain is somewhat decoupled. In such systems, during search the variable is indeed
statefully bound to different values of the domain before constraints are applied.
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theory. The result of a musical CSP can be, for example, a musical segment (e.g., a
sequence of plain pitches), an analysis of a given piece (e.g., a harmonic analysis), or a
full-scale composition.

Many music theories have been modeled and implemented by CP. In addition, com-
posers have already made extensive use of CP. Examples include Antoine Bonnet (e.g.,
for Épitaphe for 8 brass instruments, 2 pianos, orchestra, and electro-acoustics, 1992–
1994 [Bresson et al. 2005]); Magnus Lindberg (Engine for chamber orchestra, 1996
[Rueda et al. 1998]); Georges Bloch (Palm Sax for seven saxophones, [Rueda et al.
1998]), Örjan Sandred (Kalejdoskop for clarinet, viola, and piano, 1999 [Sandred 2003]);
Jacopo Baboni Schilingi (Concubia nocte, in memoria di Luciano Berio for soprano and
live computer, 2003);3 Johannes Kretz (second horizon for piano and orchestra, 2002
[Kretz 2003]); and Hans Tutschku (Die Süsse unserer traurigen Kindheit, music the-
atre, 2005).4

The CP paradigm is well suited to the needs of computer-aided composition. Com-
posers often prefer a way of working that is situated somewhere between composing
“by hand” and formalizing the composition process such that it can be delegated to the
computer; CP supports this way of working very well [Anders and Miranda 2009b]. For
example, composers can determine some aspects of the music (e.g., certain pitches) by
hand and restrict other aspects by constraints. Alternatively, composers may specify
the high-level structure (e.g., the formal structure) manually and let the computer fill
in the details. Furthermore, composers usually do not fully formalize certain aspects
of the composition process before they start composing. Instead, the formalization is
often an integral aspect of the composition process itself. A composition task defined
by means of CP can be shaped in a highly flexible way during the composition process
by the adding, removing, and changing of individual constraints.

This section demonstrates the variety of musical CSPs that have been published. We
first describe a simple (but nontrivial) musical constraint satisfaction example in full
detail. Then we briefly introduce classical music theory disciplines, and survey work
that has implemented these theories using CP. Classical music theory disciplines focus
on pitches, and therefore most of the presented musical CSPs primarily constrain note
pitches in some way.

3.1. A First Example: All-Interval Series

This section presents a first musical CSP example that stems from serial music com-
position. In this technique, the composer organizes the pitches in a composition with
the help of a tone row (also known as twelve-tone series). A tone row is a sequence of
12 tones that arranges the twelve chromatic pitch classes (tone names) in a particular
order, where each pitch class occurs exactly once. A row can be transformed in many
ways. The most common transformations are transposition, retrograde (reversal in
time), and inversion (mirrored along a pitch axis). Composers use tone rows as a device
to achieve coherency in music, even if the music abandons conventional harmony. A
seminal textbook on serial composition is Perle [1991], and Křenek [1952] provides a
practical introduction to this composition technique.

There have been many cases where composers took great care in designing their tone
rows. A prominent example of special tone rows is the set of all-interval series. In an
all-interval series, not only the 12 pitch classes but also the eleven intervals between
them are pairwise distinct (i.e., each interval occurs only once). Another example for

3Personal communication at PRISMA (Pedagogia e Ricerca sui Sistemi Musicali Assistiti) meeting, January
2004 at Centro Tempo Reale in Florence.
4Personal communication at PRISMA meeting, June 2006 at IRCAM, Paris.
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Fig. 2. All-interval series, whose two halves also form transposed retrogrades of each other.

Fig. 3. A musical CSP example: an all-interval series definition.

special tone rows are symmetric rows, in which some section of the row is a strict
transformation of another section.

Figure 2 shows an all-interval series example (cited in Gervink [1995] and Křenek
[1952]). It can be seen that each pitch class occurs only once in the series. Similarly,
also every interval between the pitches is unique (reported by integers above the staff,
measured in semitones). These intervals are computed in such a way that they are
inversional equivalent: complementary intervals such a fifth upwards and a fourth
downwards count as the same interval (namely 7). In this particular case, the series is
even both an all-interval series and a symmetric series (namely transposed retrograde).

We now present a full all-interval series definition, in order to demonstrate how a
musical CSP may look (Figure 3). The definition first creates a music representation,
consisting of the two lists PitchClasses and Intervals. The list PitchClasses represents
the sequence of pitch classes, that is the all-interval series solution. The list Intervals
represents the sequence of the intervals between these pitch classes. Each pitch class
is represented by an integer between 0 and 11 (i.e., between c and b). Each interval is
represented by an integer between 1 and 11 (0 would be unison, but this interval does
not occur in a twelve-tone row). The pitch classes and intervals are the constrained
variables in this problem: their values will only be found during the search by the
constraint solver.

The rest of the definition consists of a conjunction of constraints on this music repre-
sentation. First, the relation between all pairs of consecutive pitch classes and the in-
tervals between them is restricted by the constraint inversionalEquivalentInterval (see
Figure 3(b)). The constraint distinct enforces that all variables in the lists PitchClasses
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Fig. 4. Polyphonic music consists of multiple voices which accompany each other; Baroque music expresses
an implicit harmonic progression (J.S. Bach, Inventio 1, beginning).

and Intervals are pairwise distinct. Finally, two additional constraints determine the
first and the last pitch class in order to prohibit series transpositions, and to amplify
the information available to the constraint solver for efficiency. This definition holds
the 3856 solutions known from the literature [Morris and Starr 1974].

This article introduces some new terminology in order to simplify the discussion
of constraints and their effect in a musical CSP. We will use this terminology later
when describing and comparing different systems in which users can implement their
own CSPs. This text refers to sets of variables (or score objects) that are interrelated
in the same way as instances of the same score context.5 Examples include the sets
of consecutive note pairs in a melody, sets of simultaneous notes in a score, sets of
intervals between simultaneous notes, sets of all score objects that belong to a single
bar and so forth.

This text also introduces the term constraint scope to denote all score contexts to
which a single constraint is applied (a set of sets of variables or score objects). In music
CP, a constraint is often uniformly applied to multiple sets of variables or score objects.
For example, the constraint inversionalEquivalentInterval is applied to 11 variable sets
in Figure 3.

CP is only one way to implement music theory models. Morris and Starr [1974]
present a specially developed algorithm to compute all-interval series. Nevertheless,
music CP has the advantage that the user only needs to state the problem declaratively
without developing a special algorithm, which is often a very time-consuming activity.
For example, a constraint system user may easily add additional constraints that
require the solution to be both an all-interval series and a symmetrical series (as the
example row in Figure 2). By contrast, using an algorithmic approach often requires a
laborious algorithm redesign when the problem specification changes. Nevertheless, a
specially designed algorithm is often more efficiently executed.

The rest of this section surveys classical music theory disciplines and constraint
systems that implement them.

3.2. Counterpoint

Polyphonic music consists of multiple voices that accompany each other. Figure 4
presents an example. Over the centuries, many counterpoint textbooks have been writ-
ten that teach how to compose polyphonic music. Different textbooks often cover differ-
ent musical styles. Today, two style families are taught most frequently. One approach
is oriented at Renaissance music and the composer Palestrina in particular. Fux [1725]
wrote the seminal treatise on this approach, while the classical textbook by Jeppesen
[1930] covers the style of Palestrina more accurately. Whereas in the first approach
harmonic considerations are at best secondary, the other—and historically younger—
approach teaches how to compose polyphonic music that expresses a harmonic

5The term score context is inspired by Lilypond [Nienhuys and Nieuwenhuizen 2003] and PWConstraints
[Laurson 1996], however, the term is redefined here with a much more general meaning.
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progression. Baroque music, for example, usually follows this approach (Figure 4). Im-
portant textbooks on harmonic counterpoint are Schoenberg [1964] and Piston [1947].
Finally, some authors teach several different contrapuntal styles [Motte 1981].

The 20th and 21st century saw further developments of polyphonic music. These are
rarely covered by counterpoint textbooks, but nevertheless have been addressed in mu-
sical CSPs. Important examples include the dodecaphonic technique of Schoenberg and
others [Perle 1991] (refer to the preceding all-interval series example), its descendants
like serialism or Stockhausen’s formula composition [Conen 1991], the micropolyphony
developed by Ligeti [Bernard 1994], and Nancarrow’s rhythmical counterpoint [Gann
2006].

There exist several systems creating polyphonic music by means of CP. Scholastic
counterpoint (e.g., the faithful application of Fux [1725]) features a particular strict set
of rules when compared with other music theory subdisciplines, for example, rhythm
or form. A strict rule set makes formal modeling more easy, which explains why coun-
terpoint has been of great interest for designers of rule-based systems. Nevertheless,
harmonic counterpoint has rarely been addressed because it is more complex, as it
implies a theory of harmony model.

Ebcioglu [1980] proposes a system for creating two-part florid counterpoint: to a
given cantus firmus the system composes a matching voice which is rhythmically in-
dependent. The author lists almost 50 implemented counterpoint constraints, which
include complex high-level constraints such as “the pitches of different local maxima
(i.e., melodic peaks) within three measures of the voice are unique”. Sources for con-
straints were Joseph Marx and Charles Koechlin. Because their rules were insufficient
for automatic composition, Ebcioglu added rules of his own. The search strategy embeds
heuristics that prefer steps to skips and note pitches that have not occurred before.
Two solutions, presented by Ebcioglu [1980], demonstrate that the system achieves its
goal—to create typical “conservatory level” counterpoint exercises—pretty well.

A system for creating species counterpoint was introduced by Schottstaedt [1989],
who aimed to follow the rule set of Fux [1725] as closely as possible. The system
implements all five species for up to six voices. However, the author modified the
original Fuxian rule set (more then 40 rules are quoted in article) to get closer to
Fux’ actual examples. In accordance with music theorists (including Fux) that state
that rules are merely guidelines and no absolutes, the system assigns each constraint
a numeric penalty value to denote its relative importance: the system searches for
a solution with a small accumulated penalty. Compared with other counterpoint
studies, Schottstaedt [1989] achieved relatively advanced examples (e.g., fifth species
for five voices). Still, the shown musical results reveal some limitations of the system’s
rule set: in particular, the rhythmic structure is atypical for Palestrina style (almost
march-like), and the melodies contain many large skips, in contrast to the Fuxian
examples.

Polyphonic music in the style of Josquin des Prez is addressed by Laurson [1996],
who implemented several rules from the Josquin chapter of Motte [1981]. Nevertheless,
the goal of this research is not so much to simulate a specific historical style, but to
study the problem of polyphonic CSPs in general. The resulting system PWConstraints
and its subsystem Score-PMC are further discussed shortly.

Several researchers addressed polyphonic problems outside the canon of conven-
tional counterpoint. Musical CSPs that create dense Ligeti-like textures have been
proposed by Laurson and Kuuskankare [2001] and Chemillier and Truchet [2001].
Jones [2000] developed a pragmatic tool for composers that implements atonal coun-
terpoint. Finally, Chemillier and Truchet [2001] modeled a two-voice canon following
rules that are typical for the Nzakara harp repertoire from the Central African Republic
using CP.
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Fig. 5. Different approaches to harmony point out different harmonic relations: comparison of Roman
numerals vs. functional analysis (see footnote 6).

3.3. Harmony

As with counterpoint, there exists a huge amount of literature on the subject of har-
mony. Authors differ less in their focus on a certain style; the history of harmony shows
a more continuous development when compared with counterpoint. However, there
exist different approaches to explain harmonic phenomena. Most authors describe har-
monic progressions as progressions of chord roots and analyse all chords in terms of
their relationship with the tonic. This idea goes back to Rameau [1722], but different
conclusions are drawn by later authors. One approach is based on the assumption
that chord roots indicate one of the seven (major or minor) scale degrees, which are
conventionally notated by Roman numerals, lowercase letters are commonly used for
minor chords. Schoenberg [1911] wrote a particularly accomplished textbook using this
approach. Another approach (often called functional harmony) only accepts three dif-
ferent main harmonic functions, namely the tonic, dominant and subdominant; usually
notated with their initials T , D, and S. This approach explains all chords as variants
of these main functions [Riemann 1887]. The approach based on scale degrees high-
lights the diatonic interval between chord roots, whereas functional harmony denotes
which chords can substitute each other. Figure 5 compares both approaches.6 Finally,
Schenker [1935] and Schoenberg [1969] put particular emphasis on larger-scale struc-
tures in harmonic progressions.

Like counterpoint, the development of harmony and its study are still ongoing and
these developments are of particular interest for composers using constraint systems.
For example, the harmonic language of “atonal music”7, music in 12-tone equal temper-
ament without a tonal center and often consisting of highly complex chords, is described
in the influential work by Forte [1973] in terms of pitch class sets.8 Microtonal music,
and in particular music in just intonation, is another important example for the on-
going development. The seminal work on just intonation is Partch [1974], while Doty
[2002] wrote a tutorial on the subject, and an extensive encyclopedia on just intonation
theory is presented by Monzo [2005].

6The root of the fourth chord in Figure 5 is D, which is the second degree (ii) in C major. The interval
between the root of this and the next chord is a fourth, which is reflected by their ordinals (ii and V 7, the
7 indicates that a seventh is added to the chord). This fourth chord in Figure 5 is also the relative minor of
the subdominant, in Riemann’s terminology the subdominant parallel (Sp): Riemann argues that variants
of a chord (e.g., S and Sp) can substitute each other.
7Schoenberg—who was the first to radically break out of traditional tonic-related harmony—detested the
term “atonal music”; he preferred “pantonal music” instead.
8Numeric pitch classes have been very successful for the computational modeling of music, including tonal
music. For example, the C-major triad C, E, G is represented by the pitch class set {0, 4, 7}. Many systems
discussed later in this article make use of this representation internally.

ACM Computing Surveys, Vol. 43, No. 4, Article 30, Publication date: October 2011.



CSUR4304-30 ACM-TRANSACTION September 16, 2011 21:2

30:10 T. Anders and E. R. Miranda

Much research has been carried out on constraint-based harmonization. Pachet
and Roy [2001] provide a survey on this subject. The rest of this subsection reviews
constraint-based harmonization systems.

CHORAL [Ebcioglu 1987; 1992] is a system that creates four-part harmonizations
in the style of Johann Sebastian Bach for given choral melodies. CHORAL received
much attention for the musical quality of its output: according to its author, CHORAL
accomplished the competence of a talented music student. Ebcioglu’s detailed analysis
of compositions by Bach resulted in the impressive amount of about 350 constraints im-
plemented by the system. These address two subtasks: the harmonization (creating the
chord skeleton, style-appropriate modulation, and cadencing) and melody generation
(with special care of the outer voices).

The often-cited article by Tsang and Aitken [1991] proposes a lucid system with a
small set of 20 constraints, which creates four-part harmonizations of a choral melody.

The system designed by Ramirez and Peralta [1998] also automatically harmonizes
a given melody with an appropriate chord sequence. The system finds a sequence of
absolute chord names such as C, Dm, G, C,9 whereby the system is limited to single
key melodies and only considers diatonic triads in the solution. To increase the musical
quality, the system further constrains solutions to follow standard chord patterns (e.g.,
I, II, V, I) stored in a database.

Coppelia [Zimmermann 2001] creates homophonic chord progressions that also fea-
ture a rhythmical structure. The music theory model is split into two layered submodels
which are implemented by two independent applications. The subsystem Aaron creates
a harmonic plan, represented by harmonic functions in the tradition of Hugo Riemann
(such as T , S3, D7, T ) and complements this plan by additional information (e.g., the
duration of each chord and further restrictions on single voices such as “the soprano
melody shall move downward”). COMPOzE [Henz et al. 1996], the second subsystem,
creates the actual four-voice chord progression from this harmonic plan.

Phon-Amnuaisuk presents another system that creates choral harmonizations in
the style of Johann Sebastian Bach [Phon-Amnuaisuk 2001; 2002]. Phon-Amnuaisuk
criticizes CHORAL [Ebcioglu 1992] asserting that this system is hard to modify. To
realize a more adaptable constraint system design, he proposes a control language
that regulates the temporal order of decisions during the composition process (variable
ordering). For the four-voice Bach choral example, the search process may first create
the harmonic skeleton for the given melody, then outline the bass skeleton, create a
draft of the other voices, and eventually create the final version of each voice by adding
ornamentations such as passing notes.

Anders and Miranda [2009a] model Schoenberg’s guidelines for convincing chord pro-
gressions [Schoenberg 1911]. While most other systems harmonize a given melody—
often creating a new chord for each melody note (choral harmonization)—this model
creates a harmonic progression from scratch. The work models Schoenberg’s explana-
tion of his recommendations instead of the actual rules, and that way generalizes these
recommendations beyond diatonic progressions, even for microtonal music.

A CSP based on dodecaphonic pitch class sets is described by Laurson [1996]. In this
CSP, a solution consists of a sequence of (possibly overlapping) pitch class sets: such
solutions could be used by a composer to organize the harmonic structure of music.

3.4. Melody and Form

Melody-writing is highly style-dependent, and this subject is traditionally less
established in music theory than counterpoint and harmony. Nevertheless, the subject

9The authors also forbeared to formalize melodic and voice-leading rules: the system only creates a chord
name sequence.
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is covered, for example, by some general textbooks on composition. For instance,
Schoenberg [1943, 1967, 1995] (the three textbooks are sorted according to their in-
tended audience from entry-level to advanced) explains how in classical music a melody
expresses the underlying harmony and how a melody is composed from motifs and their
variations. Whereas Schoenberg teaches melody composition in a more systematic
way, Motte [1993] studies various aspects of melodies from different musical styles
(ranging from Gegorian chant to Ligeti, including children’s and political battle songs).

Research on modeling melody and form is still at an early stage. At the end of their
survey on constraint-based harmonization, Pachet and Roy [2001] point out: “How-
ever, what remains unsolved is the problem of producing musically nice or interesting
melodies.”

The work of Löthe [1999] constitutes one of the few literature examples on rule-
based melody composition. Löthe’s system creates minuet melodies (in early classical
style) over a given harmonic progression. The author describes several example rules
(based on several sources including music theory literature from the classical period,
for example, Koch [1793]) in detail and demonstrates the effect of different rule sets
with musical examples. However, these rules are actually only rules from harmonic
counterpoint applied to a single melodic line; they do not address musical form.

Motifs and their variation are very important for classical melody composition and
form. Anders [2009] argues that the foundation for the successful modeling of harmony
was the modeling of harmonic concepts such as pitches, intervals, chords, and scales.
As a first step towards a model of classical melody composition, the author presents
a formal model of musical motifs. The model defines the relation between the music
representation of a specific motif instance, the distinctive features of a more abstract
motif description, and how these features are varied in different motif instances. Be-
cause the model is implemented by constraints, the resulting motifs can also depend
on nonmotivic musical conditions such as harmonic, melodic, or rhythmic constraints.

3.5. Rhythm

Over centuries, western music focused on developing the pitch structure instead of
rhythm, which may be the reason why also music theory largely neglected the rhythmic
aspect. In one of the rare textbooks on the subject, Cooper and Meyer [1960] clearly
define rhythmical terms (such as pulse, meter, rhythm, accent, stress, tie, syncopation,
and suspension) and explain their relations in a theory of rhythm which studies the
hierarchical nature of rhythmical organization. Yet, the 20th century saw considerable
developments of the rhythmical aspect. Examples include the “additive” rhythmical
permutations of motifs resulting in changes of the metric structure introduced by
Stravinsky [Boulez and Nattiez 1990] and later further developed by Messiaen [1944],
Nancarrow’s already mentioned rhythmical counterpoint, the phasing technique in the
music of Reich [2002], and the astonishingly complex rhythmical structures in the work
of Ferneyhough [1995].

Some musical CSPs in the literature are of a purely rhythmical nature. Truchet
et al. [2001] propose a polyrhythmic problem in which each voice literally repeats a
rhythmical pattern but common onsets between the voices are avoided.

A system completely devoted to rhythmical CSPs is OMRC [Sandred 2000, 2003]. For
example, Sandred [2004] proposes a constraint-based quantification of the rhythms of
everyday gestures (e.g., extracted from the sound of a passing train) and forces these
gestures into readable music notation. Constraints may control what time signatures
are allowed and how often the time signature may change. Additionally, the composer
may apply further constraints. For example, the composer may demand that the quan-
tified result will be build from precomposed motifs.
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3.6. Instrumentation and Orchestration

The art of instrumentation involves writing for different instruments taking partic-
ular playing techniques and limitations of instruments into account. The discipline
orchestration additionally addresses how to sonically balance instruments. Berlioz and
Strauss [1904] wrote a seminal textbook on orchestration. Instrumentation and orches-
tration are still developing today. An important example is the music of Lachenmann,
which introduced many new sounds by novel playing techniques.

Laurson and Kuuskankare [2000, 2001] present musical CSPs in which melodic, har-
monic, and voice leading constraints are complemented by instrumentation constraints,
and they are presenting solutions showing idiomatic instrumental writing. The au-
thors discuss guitar and brass instrument fingering in two case studies. For example,
writing music for the guitar in a way that is well playable requires instrument-typical
considerations. Guitar music is performed on six strings (tuned in a particular way)
on which only four left-hand fingers are placed. Furthermore, the fingers can only be
stretched up to a certain amount and moving the fingers requires a certain amount of
time.

Recent work by Carpentier and Bresson [2011] proposes an orchestration system.
Users provide a target sound (for example, a recording or sound synthesis output) and
the system searches for an instrument combination (a symbolic score) that imitates this
sound. Users can restrict the solution by quantitative constraints on the attributes of
all notes of a time slice, such as how many instruments and pitches can be involved,
or what their minimum dynamics should be. Nevertheless, the system does not take
instrumentation knowledge (as found in instrumentation treatises) into account.

4. GENERIC MUSIC CONSTRAINT SYSTEMS

The systems surveyed in the preceding Section 3 demonstrate that much research has
been conducted into implementing music theory models by CP. Most of these systems
were designed exclusively to solve a single CSP or a small range of problems (e.g., the
automatic harmonization of a given melody).

Although some authors report that it is “not particularly difficult to write such a
program” [Schottstaedt 1989], the design of a system that solves a complex CSP with
reasonable efficiency is demanding. For example, Ebcioglu [1992] deemed it necessary
to first develop a new programming language for this task (namely BSL).

Moreover, music constraint systems share important requirements. Firstly, any mu-
sic constraint system requires some constraint solver. Secondly, domain-specific CSPs
share a considerable amount of domain-specific knowledge: all musical CSPs require
modeling of musical knowledge. For instance, concepts such as note, pitch, or voice are
required in a large number of musical CSPs. Whenever a musical CSP is defined “from
scratch”, all this knowledge must be modeled anew. Domain-specific optimizations of
the search process must also be carried out again. Consequently, several more generic
systems for music CP were proposed since the early nineties that greatly simplify the
definition of musical CSPs.

This article introduces the term generic music constraint system to indicate a system
that is designed to solve a considerable number of musical CSPs, in contrast to a
system designed specifically to solve a single CSP or a small set of problems. A generic
system is often developed for users who would hardly consider the design of a new
constraint system from scratch—such as composers and music theorists—but who can
greatly contribute to the research in this field.

A generic music constraint system allows users to define and solve their own musical
CSPs. In order to be more generic, these systems usually aim to be style-neutral: they
support a wide range of musical styles.
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Generic music constraint systems implement the following components: a music
representation, a constraint formalism, and a search strategy. Each system features
a music representation: it represents score information such as the pitches, notes, or
voices in the solution. This information can be known in the CSP definition, or it can be
unknown and expressed by constrained variables. For example, the durations of notes
in the score or the underlying harmonic structure may be unknown. A constraint for-
malism specifies how constraints are defined and applied to the music representation.
Finally, the solver of each system implements a particular search strategy. In the follow-
ing, we detail several generic music constraint systems, and we will always look at these
three components. In addition, we will also discuss the user interface of some systems.

The following five systems are discussed next: PWConstraints (Section 4.1); Situa-
tion (Section 4.2); MusES with BackTalk (Section 4.3); OMClouds (Section 4.4); and
Strasheela (Section 4.5). These systems are studied in chronological order, though
their development history may overlap with one another, as these systems have been
developed over several years.

For the sake of completeness, a number of further systems should be mentioned
briefly. These systems are either not in active use anymore, or extend some other
system. The number of existing systems underlines the interest in CP for modeling
music theories. Carla [Courtot 1990] is a pioneering generic music constraint system.
Arno [Anders 2000] supports CSPs on the music representation of the composition sys-
tem Common Music [Taube 1997] using the constraint solver Screamer [Siskind and
McAllester 1993]. Finally, some systems extend PWConstraints. JBS-Constraints is a
large collection of predefined constraints for PWConstraints [Schilingi 2009]. Sandred,
the author of OMRC (see preceding), recently proposed a new system PWMC that ex-
tends the capabilities of PWConstraints by introducing an extra music representation
[Sandred 2009, 2011].

4.1. PWConstraints

This section introduces the CP language PWConstraints [Laurson 1996; Rueda et al.
1998]. We study this system in much detail, because it constitutes a fine example for
introducing important problems and approaches of generic music constraint systems
in general. Other systems are then presented more briefly.

PWConstraints was originally developed as a library on top of PatchWork [Laurson
1996; Assayag et al. 1999], a visual programming language for computer-aided com-
position implemented in Common Lisp. PatchWork meanwhile developed into PWGL
[Laurson et al. 2009] and the library is now called PWGLConstraints. Nevertheless,
this article uses the old name PWConstraints to refer to both versions of the system
because from the user’s point of view these systems are very similar. Also, most of the
available literature actually discusses the old system.

PWConstraints consists of two main music constraint systems that share a similar
search strategy: PMC and Score-PMC. PMC is a general CP language for constraining
simple data-types, in particular lists of integers. Score-PMC is a special CP language
for polyphonic CSPs.

Programming constructs in PatchWork (and PWGL) present themselves as graph-
ical boxes, which is typical for many visual programming languages. Consequently,
each main part of PWConstraints comes as such a box: there is a box for PMC and
for Score-PMC. However, PWConstraints complements its graphical interface by a tex-
tual interface: the actual CSP is defined by textual Lisp code, using functions/macros
provided by PWConstraints.

4.1.1. The Music Representation of PMC. The music representation format of PMC con-
sists of a list of constrained variables. PMC supports variables with universal domain,
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Fig. 6. Declaring the domains of melody pitches for PMC.

that is variable domains can consist of arbitrary values. Common domain examples
are integers and symbols. The number of variables (i.e., the length of the list) is always
determined in the CSP definition.

As an example, let us assume a composer wants to create a choral melody. She is only
interested in the note pitches, and therefore a plain sequence of pitches is sufficient. All
melody pitches are situated in the interval between a3 (an octave below concert pitch)
and a4 (concert pitch). Using MIDI pitch numbers [Selfridge-Field 1997], the domain
{a3, . . . , a4} is encoded as the domain of integers {57, . . . , 69} (Figure 6).

Users can freely interpret variable values. For example, a sequence of integers can
be interpreted as the MIDI-pitches of a melody or as duration values. A list of lists of
integers can be interpreted, for instance, as a chord sequence (where a list of integers
represents the chord pitches by MIDI numbers without specifying the chord duration)
or as a sequence of rhythmic motifs (where a list of integers represents a sequence of
note durations).

Users may determine certain variables in the CSP definition. For example, in a list
of pitch variables users may specify that any solution begins and ends with a certain
pitch by specifying this pitch as the only domain value for these variables.

4.1.2. The Music Representation of Score-PMC. PMC is only suited for CSPs that can be
defined by constraining a variable sequence. Various musical CSPs can be expressed
that way, particularly music theory models that belong to some preparatory stage for
the actual composition process, for example, the creation of a purely rhythmical figure,
a tone row (see preceding), or a harmonic progression.

However, most western music is polyphonic by nature. Here, the term polyphony
is used in a more general meaning than usual: most music is organized in multiple
layers, for example, multiple voices, a melody plus accompaniment, or any other musical
texture where multiple events are played simultaneously.

A constraint system must take the polyphonic nature of music into account for most
CSPs outside the category of preparative CSPs. Yet, polyphonic CSPs are hard to
express by only a sequential music representation. A constraint system with only a
sequentially representation can in principle represent complex polyphonic solutions—
after all, music representation formats like a MIDI file [Selfridge-Field 1997] or a
Csound score [Boulanger 2000] are sequential and can express highly complex scores.
Nevertheless, it is still very hard to express polyphonic CSPs with a sequential music
representation format.

Polyphonic CSPs often require constraining complex score contexts (remember that
sets of score objects that are interrelated in the same way are instances of the same
score context, Section 3.1). For instance, a common contrapuntal constraint permits dis-
sonant note pitches in situations where several conditions are met that involve various
musical aspects: a note may be dissonant in cases where it is a passing tone on a weak
beat and below a certain duration. The score context of this constraint involves har-
monic information (whether a certain note is dissonant); melodic information (whether
this note is a passing tone); metric information (whether this note is on an weak beat);
and rhythmical information (the note’s duration). It is hard to express and constrain
such a complex score context in a sequential representation, because the information
required to deduce which score objects or variables belong to such a context is missing.

This problem is overcome by adding information to the music representation. Re-
search into music representation suggests an important approach for adding informa-
tion that marks score contexts: the hierarchic organization of the representation in a
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Fig. 7. In PWConstraints, the variable domain specifications and the constraints of a CSP are handed
independently to the constraint solver.

tree or even a graph [Dannenberg 1993; Wiggins et al. 1993]. For example, the infor-
mation which note belongs to which voice can be expressed adequately by grouping all
notes of a specific voice in a voice container.

The PWConstraints subsystem Score-PMC addresses this problem by defining a more
elaborate music representation that explicitly supports additional score contexts.10 In
contrast to the one-dimensional music representation of PMC, the music representa-
tion of Score-PMC resembles more a two-dimensional “musical map”. Here, the main
“dimensions” are notes in sequential order in a voice, and simultaneous notes. More
specifically, the music representation of Score-PMC supports the following contexts.

—Melodic Context. For any voice in a polyphonic score, the music representation stores
the horizontal order of notes.

—Harmonic Context. A set of notes that are sounding concurrently at the attack time
of a given note.

—Metric Context. The metric context of a given note expresses the rhythmic pattern
this note belongs to (e.g., a succession of an eighth-triplet) and the position of this
note in the pattern (e.g., second note of the triplet).

An important restriction of Score-PMC lies in the fact that note pitches are the only
variables in the music representation. All other aspects—in particular the rhythmic
structure of the score—must be fully determined in the CSP definition; nevertheless,
the rhythmic structure can be arbitrarily complex. The reason for this limitation is
the search strategy implemented by Score-PMC, which is optimized for CSPs with
predefined rhythmical structure (see Section 4.1.4).

In Texture-PMC [Laurson and Kuuskankare 2001], an alternative extension of PW-
Constraints, other note parameters can also be constrained (e.g., rhythmic values).
However, the program still requires a predefined rhythmical structure, which is poten-
tially overwritten during the search process. Internally, all variables are still encoded
as note pitches.

Score-PMC does not support user extensions. For example, users cannot define addi-
tional score contexts that may be required for complex CSPs.

4.1.3. The Constraint Formalism. After introducing the music representations of PWCon-
straints as given before, this section explains how constraints are defined and applied
to these music representations.

In PMC, a CSP is defined by complementing the declaration of the variable domains
by constraints that pose restrictions on a solution. Figure 7 points out that the do-
mains and constraints are given separately to the constraint solver. Handing multiple
constraints to the solver implicitly expresses a conjunction of all these constraints. The

10PWConstraints also uses the term score context, but uses it in a more narrow meaning, which only denotes
the contexts listed in this subsection.
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Fig. 8. A PMC constraint definition example which states that the interval between any two consecutive
pitches must not exceed a fifth (i.e., seven semitones).

actual variables are created by the system “behind the stage”. Score-PMC uses the
same approach, but in addition to the variable domains and the constraints a fully
determined score is given to the constraint solver. As only note pitches are variables
in Score-PMC, this score determines all other aspects, in particular the rhythmical
structure.

Every music constraint system must support some mechanism to apply constraints
to variables in the music representation. This mechanism also controls the scope of a
constraint (remember that the scope of a constraint is the set of all variable sets to
which a single constraint is applied).

PWConstraints introduces a pattern matching mechanism for this purpose. Pat-
tern matching is well-known, for example, from the UNIX shell, where a pattern is a
placeholder for a character sequence. The pattern *test.txt matches the file names
mytest.txt as well as my-other-test.txt.

The pattern matching mechanism of PMC introduces a mini language that denotes
the position of elements in the sequential music representation. This language con-
sists of only three constructs.11 There are two place-holders: the place-holder symbol
? matches exactly one sequence element, and the symbol ∗ matches zero or more ele-
ments. The third construct consists of pattern-matching variables.

An example will illustrate this pattern-matching language. In the expression
[?, ∗, P1, P2], the place-holder ? matches the first element in the sequential music rep-
resentation. The symbol ∗ matches either no element, or the second, or the second and
the third and so forth. Consequently, the two pattern-matching variables P1 and P2
match any pair of two successive elements, except the first pair. Note that no final ∗ is
required that would match the rest of the sequence.

A PWConstraints constraint definition consists of a pattern-matching part and a
constraint body. Figure 812 presents the definition of a melodic constraint that restricts
the interval between two successive pitches Pitch1 and Pitch2 to a fifth as maximum
(i.e., seven semitones).13 The pattern matches any two consecutive elements in a
sequence of variables (the music representation of PMC). The pattern-matching vari-
ables Pitch1 and Pitch2 bind the free variables in the constraint body definition. The
body of a constraint is always an expression that returns a Boolean value. For every
solution to a CSP, PWConstraints makes sure that the body of a constraint returns
true for every match of its corresponding pattern matching expression. Because the
pitches are encoded numerically, users can define numeric relations between them.

11PWConstraints also introduces a fourth construct, index variables, for convenience. However, all patterns
using index variables can be reproduced with the three constructs introduced in this section.
12In PWConstraints, constraints are defined in Lisp; this text uses a notation based on first-order logic
instead (and leaves out some formal details for simplicity).
13This constraint is a simplified version of a Palestrina-style counterpoint rule, which is reflected by many
counterpoint treatises. In its strict form, it permits intervals between a minor second and a fifth, or an octave.
Upwards, also the minor sixth is allowed. Additionally, the rule prohibits all diminished and augmented
melodic intervals [Jeppesen 1939].
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The example introduces a new constrained variable Interval and applies a conjunction
of two constraints.

As explained earlier, the music representation of PMC is a flat list of variables. A
constraint application mechanism based on pattern matching is convenient for such a
data structure. However, polyphonic CSPs often include nonsequential score object sets
(e.g., simultaneous notes which occur in different voices). PWConstraints’ polyphonic
subsystem Score-PMC therefore defines a hierarchical music representation and
supports the context’s melodic note sequence, simultaneous notes, and the metric
position of a note (see preceding). Score-PMC simplifies the application of constraints
to these contexts by extending the pattern matching language of PMC [Laurson and
Kuuskankare 2005]. Instead of matching only individual variables, additional language
keywords support the matching of notes (a compound data structure) in a sequence of
melody notes, simultaneous note sets, and note sets at specific metric positions.

The music representation of Score-PMC provides an interface of functions and macros
for accessing further score information. In a typical scenario, note objects are given to
a constraint body via pattern matching and note parameters such as their pitches are
then accessed by functions within the body. The scope of a constraint (i.e., which sets
of variables it affects) is thus specified with a pattern-matching expression, optionally
complemented by accessor functions.

Highly complex polyphonic CSPs can be expressed with Score-PMC. However, its
constraint formalism has some limitations. The pattern-matching language is axiomat-
ically limited to what can be expressed by a pattern. For example, a single PWCon-
straints pattern cannot express “any pair of consecutive variables in a sequence such
that pairs do not overlap”. Besides, PWConstraints users access variables only within
a constraint definition: a constraint cannot be applied directly to variables. Also, a
constraint definition always defines both the actual constraint (the body) and its scope
(the pattern-matching expression): the actual constraint and its application are always
coupled. Consequently, constraints cannot be nested, because a pattern-matching ex-
pression can only occur at the top level of a constraint definition.

4.1.4. The Search Strategy. The solver of PWConstraints performs a chronological back-
tracking (BT) search [Dechter 2003]. This algorithm first visits a variable and selects
a value from its domain. The algorithm checks whether this value satisfies all con-
straints on this variable. In that case the algorithm proceeds to the next variable. If
any constraint fails, the algorithm tries sequentially the other domain values for the
current variable, and as soon as a domain value fulfils all constraints, the algorithm
proceeds to the next variable. However, if no domain value satisfies all constraints,
then the algorithm met a dead-end. In that case, backtracking occurs: the algorithm
turns back to the previously visited variable and continues to try out its other domain
values. When all variables are determined, the algorithm found a solution to the CSP.

BT performs a complete search (i.e., if there exist solutions, the algorithm finds
one). BT can find one, multiple, or all solutions. However, BT has several well-known
weaknesses [Dechter 2003].

—BT always detects a conflict too late: only after all variables affected by a constraint
are determined, the constraint may either succeed or fail. This problem is addressed
by consistency enforcing and constraint propagation. Ovans [1990] likely applied
consistency enforcing the first time for musical applications (see also Sections 4.3.3
and 4.5.3 that follow).

—Failures with the same cause occur repeatedly (thrashing): BT does not analyze which
variable causes a constraint to fail. This problem is addressed by techniques like
intelligent backtracking (or backjumping). Ebcioglu [1987] pioneered backjumping
for musical applications in his language BSL (Section 1).
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—When after backtracking the algorithm checks variables that it already checked be-
fore, it does not remember which value combinations failed before and will check
them again (redundant work). This problem is addressed by techniques like back-
marking.

—Finally, BT performs decisions in an order that was fixed before the search started
(static variable ordering, also known as static variable selection). The variable or-
dering of PMC is the sequential order of the variables in the music representation. A
static variable ordering cannot take into account information that is only gained dur-
ing the search process; static variable orderings can therefore lead to a larger search
tree. This problem is addressed by dynamic variable orderings (see Section 4.5.3).

Nevertheless, BT has the advantage that a minimal amount of information must be
kept in the search process, which is beneficial for problems with a large number of vari-
ables but with relatively few constraints (underconstrained CSP). Such “easy problems”
are not uncommon for music.

Variables with universal domain allow for composite domain values. Composite vari-
able domains could be used in principle to express and constrain a hierarchic structure,
even if the music representation is purely sequential (as in PMC). However, composite
domains severely impair efficiency: determining such a variable amounts to an inef-
ficient generate-and-test. A more efficient approach uses a composite data structure
containing multiple variables that can be determined independently (as in Score-PMC).

Score-PMC also performs BT. However, the system first computes an efficient order in
which the notes are visited during the search process (static variable ordering). To this
end, Score-PMC evaluates the rhythmic structure of the solution. Using this rhythmic
structure, Score-PMC calculates a search order for its polyphonic music representation
such that the search process always proceeds “from left to right”, that is notes with
a smaller start time value are visited first. This search strategy is the reason why
Score-PMC requires that the temporal structure of any CSP to be fully determined in
the problem definition.

In addition to strict constraints (which a solution must always obey), PWConstraints
supports heuristic constraints which allow users to express mere preferences and to
avoid overconstrained situations (where multiple constraints contradict each other).
The body of a heuristic constraint returns a number instead of a Boolean value. For
“better” solutions the constraint returns a higher number. In case of a conflict between
heuristic constraints, the more important heuristic constraint (the one with a higher
heuristic value) is preferred to hold. Heuristic constraints affect the value ordering,
that is the order in which domain values are checked. During the search process, a
domain value of the current variable with the highest heuristic value is checked first.
Thus, heuristic constraints guide the search to find “better” solutions earlier, but they
do not guarantee to find an optimal solution.

4.2. Situation

Situation [Rueda et al. 1998; Assayag et al. 1999] was originally conceived in collabora-
tion between the composer Antoine Bonnet and the computer scientist Camilo Rueda as
a constraint system for solving a range of harmonic CSPs. Situation was first developed
as a PatchWork library, and was later extended and ported as OMSituation [Bonnet
and Rueda 1999] to the PatchWork successor OpenMusic [Assayag et al. 1999]. Never-
theless, this text will refer to any version of the system simply as Situation. Situation
is written in Common Lisp.

Early versions of the system supported quasi ready-made components to define har-
monic CSPs. For example, instead of defining constraints from scratch, the user utilizes
predefined “constraint templates”, that is constraints that expect arguments from the
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Fig. 9. The music representation of Situation consists of objects containing points and distances between
these points.

user to detail their effect. Although such an approach limits the CSPs the user can
define, it also simplifies the definition process for the user. Later, the system was ex-
tended to support a larger set of CSPs (e.g., additionally rhythmical CSPs). Still, the
design of the system is better understood with its history in mind.

4.2.1. Music Representation. The music representation of Situation consists of a se-
quence of objects (Figure 9). An object has an internal structure: it consists of one or
more points, and Situation defines distances between these points. In many CSPs, a
point represents a note pitch, an object represents a chord containing multiple pitches,
and a distance represents an interval between two note pitches.

Situation distinguishes between internal distances and external distances. An inter-
nal distance represents the distance between two points of a single object (also called
vertical distance: interpreted as the distance between two neighboring note pitches in a
single chord), and an external distance represents the distance between two points from
different objects (also called horizontal distance: interpreted as the distance between
matching note pitches of two consecutive chords).

The points and the distances constitute the variables in a CSP. Their domain con-
sists of numbers.14 Implicit constraints control the relation between the points and
distances.

Users may freely interpret the meaning of points and the distances between them.
For instance, points may represent pitches measured in MIDI key-numbers, or fre-
quency values measured in hertz. Points may also represent note start times measured
in beats, in which case distances represent temporal intervals. Situation supports this
flexibility by letting the user control which implicit constraints actually hold between
points and distances. For example, in case points represent MIDI key-numbers, then
the relation between points and distances is governed by addition constrains. If, how-
ever, points represent frequencies, then multiplication constraints govern the relation
between points and distances. Nevertheless, the music representation of Situation is
particularly suited for CSPs on chord sequences: an explicit representation of pitches
and the intervals between them is suitable for many such problems.

Situation also offers an alternative representation mode that consists of a plain
sequence of variables. This representation mode supports variables with universal
domains, like the music representation of PMC (Section 4.1.1).

4.2.2. Constraint Formalism. Situation provides predefined constraints that are not just
constraint primitives like numeric operations (e.g., =, >, or +) but generalized con-
straints for composition purposes. For example, Situation defines a set of constraints
that impose patterns on various viewpoints of the music (e.g., constraints affecting a

14Internally, each point is represented by its own variable, whereas a sequence of distances is represented
by a single variable whose domain consists of number sequences.
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Fig. 10. Typical syntax of a constraint application mini-language in Situation (a); example with concrete
range specifications (b).

voice profile by constraining the number of consecutive upward and downward move-
ments or the number of repeated melodic intervals). Situation complements these
predefined constraints by means for user-defined constraints (Boolean functions).

Similar to PWConstraints, Situation provides a convenient and powerful mini-
language to express the scope of a constraint. However, Situation defines individual
mini-languages for different constraints, and it also defines many more symbols than
PWConstraints’ pattern-matching language. Nevertheless, for many constraints their
application mini-language has a similar structure: an alternating sequence of index
range specifications complemented by further arguments (Figure 10(a)).

The index range specifications control the scope of a constraint. For example, the
user may apply a constraint to the first, second, and fifth object in the music rep-
resentation with 〈arguments〉1 and to the seventh to tenth object with 〈arguments〉2
(Figure 10(b); indices are 0-based, index 0 points to the first object). The language
used in the 〈arguments〉 expressions is constraint-dependent and therefore not further
discussed here.15

Unlike the constraint application mechanism of PWConstraints, the application
mechanism of Situation is fully generic: a single constraint can be applied to any set of
variables in the music representation. Nevertheless, due to the sequential structure of
its music representation, Situation supports only score contexts defined by positional
relations of objects (and their points plus distances). Consequently, it is difficult to
express constraints that constrain complex score contexts as required, for example, in
polyphonic CSPs. It will be very hard to define a contrapuntal constraint that requires
access to score information such as the harmonic context, and the metric position of a
note. By contrast, Score-PMC does support complex polyphonic CSPs.

4.2.3. Search Strategy. Compared with PWConstraints, Situation’s constraint solver
performs a more sophisticated search strategy. Situation applies a variation of forward-
checking [Dechter 2003], a limited form of constraint propagation. Minimal forward
checking [Dent and Mercer 1994] delays the reduction of the domain of variables (i.e.,
the forward checking) by means of lazy evaluation [Abelson et al. 1985] until these
variables are actually visited during the search. That way, the algorithm provides the
benefits of forward checking (to prune of domains, i.e., to reduce the search space)
by reducing the work the algorithm has to perform (searching through possibly large
domains for consistent values).

Situation’s first-found forward checking algorithm [Rueda and Valencia 1997] adapts
minimal forward checking for hierarchical domains. A variable for distances (a variable
whose domain consists of number sequences, see preceding) has often a large domain.
Therefore, Situation optionally organizes this domain in a hierarchical manner for
efficiency. Such a hierarchically structured domain combines domain value subsets
that share some property into a subtree of the domain. That way, a constraint on this
common property can be propagated for all domain values in the subtree at once. Per
default, this common property is the sum of the sequence elements (i.e., the sum of

15Besides the index range specifications, a number of other factors affect the scope of a constraint including
the arguments associated with an index range specification, the number of arguments expected by a function
implementing a user constraint, and the optional access of already determined objects (predecessors of
current object) within a user-constraint definition.
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Fig. 11. Constraint applied to multiple variable sets by a loop with explicit variable access, as proposed by
MusES with BackTalk.

object distances), because this property is constrained in many harmonic CSPs. The
user can specify a different common property.

In addition to strict CSPs, Situation also supports CSPs with soft constraints. For
soft constraints, a numeric preference value is specified for each constraint.

4.3. MusES with BackTalk

The combination of the constraint system BackTalk [Roy and Pachet 1997] and the
music representation MusES [Pachet 1993; Pachet et al. 1996] forms a highly expres-
sive and extendable music constraint system which has been applied to several musical
problems such as automatic harmonization [Pachet and Roy 1995, 1998]. BackTalk and
MusES are implemented in the SmallTalk programming language.

4.3.1. Music Representation. As shown previously, PMC and Situation group score ob-
jects in their music representation in sequences. For example, a Situation score is
always a sequence of score objects where each object contains points and distances.
Score-PMC defines a hierarchically nested music representation, but at each hierar-
chic layer score objects are arranged in a certain sequential order.

MusES uses a different approach. Every temporal object in MusES (e.g., each note)
stores its start time and duration. Temporal objects can be grouped in a temporal
collection. A temporal collection ensures that its contained objects are always sorted
according to their start time and duration [Pachet et al. 1996]. This design allows for
an easy and efficient access to, for example, all objects in a temporal collection within a
certain time span. Based on this ability, MusES defines an exhaustive set of temporal
relations between temporal objects.

However, the fact that temporal collections implicitly sort their contained objects
restricts the expressiveness of these collections. Firstly, temporal collections cannot be
nested in MusES (it would disturb the automatic temporal ordering). A CSP can nev-
ertheless define multiple temporal collections (e.g., for representing multiple voices).
Secondly, other relations (e.g., positional relations) are missing in the representation.
For example, information such as the “following note” in a melody is not easily acces-
sible from its temporal objects [Pachet 1994].

MusES is highly extendable. While the representations of PWConstraints and Situ-
ation are provided “as is” (only few alterations are possible, e.g., the number of points
in a Situation object can be changed), MusES users can replace the built-in MusES
objects with their own objects. MusES consists of a set of SmallTalk classes and users
can extend the representation incrementally by defining subclasses of existing MusES
classes.

4.3.2. Constraint Application. Constrained variables are accessible directly in BackTalk,
whereas variables are only accessible indirectly in PWConstraints and Situation via
the constraint application mechanisms of these systems (e.g., pattern matching). As a
result, in BackTalk common control structures can be used for applying constraints to
variables. For example, BackTalk users can use a loop for applying a melodic constraint
to every pair of consecutive notes. The running index i of the loop is used to access
consecutive note pairs in a melody (refer to Roy and Pachet [1997]). Figure 11 shows
such a loop in first-order logic notation.

For complex constraints, however, it becomes tedious to explicitly access all the vari-
ables involved. Even for this simple example we need to perform arithmetic operations
on indices. To present a more complex example, a voice-leading constraint like “avoid
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open parallel fifths and octaves” involves pairs of consecutive notes in multiple voices
and at the same time the intervals between simultaneous notes. Expressing these score
contexts by nested loops would result in a complex program. The constraint applica-
tion mechanisms of PWConstraints and Situation shown before are more convenient for
complex cases. For example, Score-PMC provides suitable applicators for voice-leading
constraints.

Conversely, the constraint application mechanisms of PWConstraints and Situation
are limited in their generality. By contrast, control structures such as nested loops are
fully generic.

4.3.3. Search Strategy. BackTalk constitutes a system for solving CSPs over finite do-
mains of arbitrary SmallTalk objects. Because the efficiency of search strategies is
highly problem-dependent, BackTalk implements a library of constraint solving algo-
rithms from which users can choose the algorithm that best suits their purposes.

In a first stage, the solver reduces the domains of the variables and that way reduces
the search space (often drastically!), without removing any solutions. Several generic
arc-consistency enforcing algorithms [Dechter 2003] are provided for this purpose (AC-
3, AC-4, . . . , AC-7).

In a second stage, the solver performs the actual search where the solver makes deci-
sions that can fail and need to be taken back (backtracking). Again, several algorithms
are provided for this stage including chronological backtracking, forward-checking,
backjumping, and backmarking.

MusES substantially improves the efficiency of the search process by also repre-
senting analytical information explicitly. For example, MusES features objects that
represent intervals, scales, and chords. Besides being beneficial for the definition of
CSPs, such a representation scheme provides the consistency enforcing algorithm with
additional information which is useful for reducing the search space (e.g., only certain
pitch interval combinations form a chord) [Pachet and Roy 1995].

4.4. OMClouds

OMClouds [Truchet et al. 2001; Truchet and Codognet 2004] constitutes a music con-
straint system that is particularly easy to use. It extends the composition system
OpenMusic, and is implemented in Common Lisp.

4.4.1. Search Strategy. The search strategy applied by OMClouds differs clearly from
the strategies of the systems discussed earlier. Whereas most music constraint systems
support a complete search, OMClouds is based solely on a heuristic search strategy that
iteratively improves an initial random solution to a CSP. More specifically, OMClouds’
constraint solver performs a local improvement search strategy [Codognet and Diaz
2001; Codognet et al. 2002]. This strategy quickly finds an approximated solution to a
constraint problem that fulfils many or most of the constraints imposed.

Internally, a constraint is implemented by a cost function, which returns a numeric
value indicating how much its constraint is violated. In a nutshell, the algorithm starts
by determining all variables of the CSP to some random value from their domain. Then,
the algorithm computes the accumulated cost of all cost functions for every variable
to find the variable whose current value conforms least a solution to the CSP. This
variable is updated for the next iteration. OMClouds extends this basic idea by a taboo
search method [Glover and Laguna 1997]: unsuccessful variable values are not tried
again for a while, in order to avoid local minima in the search space.

On the user level, however, a CSP is expressed by strict constraints (e.g., X = Y ).
Only internally, these constraints are translated into cost functions (e.g., X = Y is
transformed into |X − Y |).
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The heuristic approach of OMClouds makes the definition of CSPs easier because no
overconstrained situation can occur. In a system that only supports strict constraints,
the CSP must explicitly handle special cases in which some constraint can be neglected.
In OMClouds, constraint definitions can be less carefully formulated: the heuristic
search strategy does not reject a solution because some constraints are not fulfilled for
certain variables.

Adaptive search does not execute a complete search. If the system is asked multiple
times for a solution to the same problem it usually comes up with different solutions,
but the system cannot output all solutions. Moreover, the system does not guarantee
to find an optimal solution even if such a solution exists. For example, constraints like
“all elements of a list are pairwise distinct” are hard to fulfil and the algorithm may
never find an exact solution to a CSP with this constraint (e.g., OMClouds may never
find a true all-interval series).

4.4.2. Music Representation. In OMClouds, variable domains can consist of any values in
principle. Nevertheless, some of its constraints support only integers due to the imple-
mentation of their cost function. In addition, all variables share the same domain. This
restriction simplifies the definition of CSPs, but also limits what CSPs can be defined.

Similar to PMC (see Section 4.1.1), OMClouds’ music representation consists of a flat
list of variables.16 This straightforward representation format was chosen probably in
order to avoid any bias caused by a more expressive music representation. A purely
sequential representation can express several musical structures. However, as has been
explained before, such a structure is poorly suited for more complex musical CSPs, in
particular polyphonic problems.

4.4.3. Constraint Formalism. OMClouds supports easy-to-use means for applying con-
straints to the variables of the CSP. All constraints of a CSP are merged by an implicit
conjunction into quasi a single constraint, which is applied to all variables in a ho-
mogeneous way. For example, constraints can be applied to every single variable or to
every pair of two consecutive variables. However, all constraints share the same con-
straint scope. Also, OMClouds does not provide any means to apply a constraint only
to a specific subset of variables (e.g., only on the first and third variable), in contrast
to the constraint application mechanisms of other systems like PWConstraints and
Situation. Again, this design results in a system that is particularly easy to use, but
which is also very limited in what CSPs can be defined with it.

4.4.4. User Interface. OMClouds is not only easy to use because it supports only a
severely limited range of musical CSPs. In addition, CSPs are defined fully with a visual
programming language in OMClouds. Using this visual language, users do not need to
memorize lots of keywords, functions, and so forth, as these can be selected in a menu.
The language uses a simple and uniform syntax: boxes are connected by patch chords.

4.5. Strasheela

The design of Strasheela [Anders 2007] aims for a highly generic music constraint sys-
tem. Strasheela supports various CSPs that are very hard or even impossible to realize

16In fact, OMClouds features three representation cases: the solution constitutes either a sequence of vari-
ables, a cycle of variables, or a permutation of variables. In all cases the solution is represented by a flat
list. The second case, however, slightly changes the constraint application mechanism while the third case
enforces an additional constraint. In the second case—the cycle—all elements (including first and last) have
a predecessor and successor. In the third case—the permutation—the number of variables in the music
representation equals the number of domain values specified and every domain value appears only once in a
solution. That way, OMClouds can avoid an all-different constraint on the solution, which is hard to fulfil
for its heuristic search.
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in other systems, such as problems in which the rhythmical, harmonic, contrapuntal,
and formal structure are constrained at the same time. Nevertheless, like previous
systems, Strasheela seeks to find a balance between generality and efficiency in order
to be useful in practice.

As Strasheela is a relatively recent system, its design benefited from examining the
design of earlier systems. Strasheela is implemented in the programming language Oz,
a language with built-in support for CP.

4.5.1. Music Representation. An important design goal for Strasheela’s music represen-
tation is that users must be able to control which information is stored in the music
representation. Instead of providing a single music representation template, as in
Score-PMC or Situation, Strasheela provides a set of building blocks for various mu-
sical concepts. Users select those building blocks required for their particular CSPs,
and construct the representation by using these. A wide range of music theory con-
cepts is already modeled as building blocks including elements such as notes, or rests,
analytical concepts such as intervals, scales, chords, or meter, grouping concepts such
as containers that arrange their content sequentially or in parallel in time, as well as
concepts for organizing musical form such as motifs.

The set of these building blocks can be freely extended. The building blocks are
instances of classes, and users can extend existing classes by inheritance, a facility
also provided in MusES.

Strasheela’s music representation design combines benefits of existing systems that
previously excluded each other. Pachet [1994] compares the design of MusES with the
design of the music representation SmOKe [Pope 1992]. SmOKe supports arbitrarily
nested event lists and the events in an event list can be arranged in any order. However,
a SmOKe event does not provide access to its start time: this information is only known
by its event list. By contrast, any information available on a MusES score object can
be accessed from the object directly. However, MusES only supports a single-level
hierarchic nesting.

Strasheela supports arbitrary hierarchic nesting of score objects, and in addition
any information available on a score object can be accessed from the object directly.
These features have been realized by two design principles: bidirectional links and
constraint propagation. Strasheela allows for hierarchic nesting of containers. How-
ever, the hierarchically nested score objects in Strasheela are bidirectionally linked:
every container provides access to its contained items and vice versa. Furthermore,
parameters exchange knowledge about their values (which are constrained variables),
due to constraint propagation. For instance, information about temporal parameters
such as start-time, duration, and end-time is propagated between temporal containers
and events.

Based on this design, Strasheela supports MusES’ exhaustive set of temporal rela-
tions, as well as any other score context. Their implementation can be less efficient
in Strasheela than in MusES (they may potentially traverse the full score), but it is
still sufficiently fast, because objects must be accessed only once (after a constraint is
applied, the search process does not require accessing objects again).

Strasheela also supports constraining the hierarchic structure of the score, if only in
a very limited way. The duration of temporal score objects can be constrained to 0, and
such objects are considered nonexisting.17 Whole sections of the score can be “removed”
with this approach.

4.5.2. Constraint Application. The design of Strasheela combines the convenience of spe-
cial constraint application mechanisms found in PWConstraints and Situation on the

17For efficiency, nonexisting score objects can only occur at the end of a container in order to avoid symmetries.
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Fig. 12. Constraining pairs of simultaneous notes with the higher-order constraint applicator
mapSimNotePairs: simultaneous note pairs are constrained to be consonant.

one hand, with the generality of using arbitrary control structures proposed by Back-
Talk on the other hand. Strasheela advocates constraint applicators based on higher-
order programming [Anders and Miranda 2011]. A constraint is a procedure and a
constraint applicator is a higher-order procedure expecting a music representation
and a constraint as arguments. This approach is fully generic, because internally a
constraint applicator can conduct any traversal of the score and thus define any con-
straint scope. At the same time, this approach is convenient because these details are
encapsulated in a constraint applicator.

Figure 12 shows an example that applies a constraint to all pairs of simultaneous
notes. The higher-order constraint applicator mapSimNotePairs expects a list of score
objects, in the example all notes in MyScore. For each note, mapSimNotePairs inter-
nally accesses its simultaneous notes and applies the constraint isConsonant to each
such note pair. Note that this constraint applicator can be used even if the rhyth-
mical structure is undetermined in the CSP definition. mapSimNotePairs delays the
constraint application until the necessary rhythmical information is found during the
search process.

Strasheela predefines constraint applicators for a wide range of use cases. The system
also provides higher-order variants of the application mechanisms of PWConstraints
and Situation. Most importantly, however, users can define new constraint applicators
if necessary.

4.5.3. Search Strategy. Strasheela uses the CP model of its implementation language
Oz [Schulte 2002]. This model combines constraint propagation with search.

Constraint propagation performs logical deductions that reduce variable domains
without removing any solution, much like the arc-consistency enforcing algorithms
employed by BackTalk. In contrast to the generic arc-consistency algorithms, how-
ever, constraint propagation algorithms are highly optimized for a specific domain and
constraint and are thus more efficient. BackTalk uses an arc-consistency algorithm
only once for prefiltering the domains before the actual search starts. The improved
efficiency of constraint propagation allows for a different approach where propagation
and the actual search take turns: before every single decision made by the search,
constraint propagation runs and reduces variable domains.

The improved efficiency of constraint propagation has a trade-off: the variable do-
mains are restricted to specific “types”. Strasheela presently supports variables with
nonnegative integers and sets of integers. Further domains can be defined; available
domains for propagators are real intervals [Dı́az et al. 2005], graphs [Dooms et al.
2005], and maps (domain of functions) [Deville et al. 2005],18 but doing so requires
low-level programming in C++. Systems like PMC or BackTalk, on the other hand,
allow for universal domains containing arbitrary values.

Whereas BackTalk provides a range of search algorithms to choose from, the Oz
CP model goes even further: this model provides abstractions that make the search
process programmable at a high level [Schulte 2002]. The variable and value ordering
(the order in which variables and their domain values are considered during the search
process) has a great impact on the size of the search tree and thus on the efficiency
of the search [van Beek 2006]. Good ordering heuristics result in a search tree with

18The references given in this sentence point to Oz-related literature that is of immediate relevance for
Strasheela. Schulte [2002, p. 1] provides more general citations on variable domains.
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Table I. System Comparison: Search Strategy Algorithms Supported by Solver

Search Strategy
PMC chronological backtrackinga

Score-PMC chronological backtracking with static variable ordering optimised for polyphonic
CSPs

Situation forward checking with lazy evaluation optimised for hierarchic domains
BackTalk multiple algorithms for pre-filtering domains, and for search tree traversal
OMClouds heuristic local improvement algorithmb

Oz concurrent domain filtering (constraint propagation), user definable dynamic variable
& value orderings, user definable search tree traversals

aForward checking is possible in principle, but only for explicitly defined forward-checking constraints.
bAn approximated solution is found quickly, but a strict solution is possibly never found.

relatively few nodes. In the constraint model of Oz, variable and value orderings can
be defined freely by users. Oz supports dynamic orderings: the decision which variable
is visited next and how its domain is reduced by the search is only made when this
decision is due.

Anders [2007] shows that musical CSPs can greatly benefit from a suitable problem-
dependent ordering. For example, the author compares the efficiency of different vari-
able orderings for a florid counterpoint CSP where both the rhythmical structure and
the pitch structure are constrained. In one variable ordering, first all rhythmical pa-
rameters are determined and then the pitches. The second ordering implements a
dynamic variant of the variable ordering of Score-PMC: variables are visited “from left
to right” in the order of the start time of their score objects. For the florid counter-
point CSP in question, the second ordering is three orders of magnitude faster than
the first ordering. Nevertheless, different CSPs may require different variable order-
ings. For example, harmonic counterpoint CSPs are often solved more efficiently when
the harmonic structure is fully determined before addressing the actual note pitches.
Strasheela provides special score variable orderings which cover a wide range of musi-
cal CSPs.

5. COMPARISON OF GENERIC MUSIC CONSTRAINT SYSTEMS

The preceding section introduced a number of generic music constraint systems one
after the other. This section summarizes this survey and compares these systems
according to a number of orthogonal criteria.

The comparison first looks at the search strategies implemented by these systems,
because later comparison sections depend on it (Section 5.1). The next two sections
compare the expressivity of these systems: what musical CSPs are supported? Instead
of listing a potentially infinite list of music theories supported, abstract criteria are
studied such as which score information is supported by a system and what subset
of this information can be constrained (the music representation format, Section 5.2),
and how are constraints applied (Section 5.3). Finally, Section 5.4 compares how easy
the systems are to use.

5.1. Search Strategy

Music constraint systems employ very different constraint solvers. Table I lists these
algorithms. The table indicates a tendency towards more sophisticated approaches in
more recent systems.

The development of two aspects stands out. On the one hand, domain filtering algo-
rithms become gradually more sophisticated. PWConstraints uses backtracking with-
out any domain filtering, Situation makes use of forward checking and optimizes this
technique with lazy evaluation, BackTalk provides a range of different algorithms for
prefiltering domains, and Oz (and thus Strasheela) supports constraint propagation
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Table II. System Comparison: Does the Solver Find All Solutions?
Does the Solver Find a Best Solution (according to some user-defined
criterion) without Traversing the Full Search Tree?

All solutions? Best solutions?
PMC yes no
Score-PMC yes no
Situation yes yesc

BackTalk yes no
OMClouds no no
Oz yes yes
cRequires knowledge of internal detail only documented in the
source code.

Table III. System Comparison: Are Hard and Soft Constraints Supported?

Hard
constraints? Soft constraints?

PMC yes yes: modelled with value ordering heuristics
Score-PMC yes yes: modelled with value ordering heuristics
Situation yes yes
BackTalk yes yes: modelled with value ordering heuristics
OMClouds no yes
Oz yes yes: modelled with reified constraints

where filtering algorithms are optimized for specific domains and constraints. Propa-
gation algorithms greatly improve the efficiency of the search and are today used by
virtually all major CP systems (e.g., SICStus Prolog [Carlsson et al. 2009], ECLiPSe
[Cheadle et al. 2003], GNU Prolog [Diaz and Codognet 2001], Gecode [Schulte et al.
2010]).

On the other hand, the actual search process becomes more flexible in later systems.
PWConstraints and Situation support a single search algorithm with a static variable
ordering, BackTalk supports a wide range of algorithms to choose from, and in Oz
the search process is programmable on a high level of abstraction. A special case,
not directly comparable to the algorithms of the other systems, is the heuristic local
improvement algorithm of OMClouds.

Different search approaches lead to different features of the solver. For example, all
systems perform a full search, except OMClouds. Systems that perform a full search
can also search for all solutions (Table II).

Sometimes it is interesting to find a best solution according to some user-specified cri-
terion (e.g., a function comparing two solutions). However, collecting first all solutions
in order to find the best is computationally expensive. Situation and Oz (Strasheela)
support a best-solution search (branch-and-bound algorithm [Schulte 2002]), which
during the search process always constrains the next solution to be better than the
previous. Together with constraint propagation this approach greatly improves the
efficiency of finding a best solution as it does not need to find all solutions first.

Modeling music theories requires hard constraints (which are always fulfilled) and
soft constraints (rules which might be broken, e.g., in an otherwise overconstrained
situation). For example, hard constraints are required for modeling an all-interval
series or for stating which pitch classes belong to a chord. Nevertheless, many rules
in music theory are only guidelines and are better implemented by soft constraints.
Table III shows that most systems provide hard constraints as a primitive, and soft
constraints are implemented by some special technique. Again, the purely heuristic
OMClouds is the exception: it does not support hard constraints.

It would have been interesting to compare the efficiency of the presented generic
music constraint systems in a benchmark. However, such a performance comparison
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would meet severe difficulties. Firstly, there does not exist any set of established and
well-defined benchmark problems for musical CSPs. It would therefore be necessary
to first define a set of such problems. However, each of these systems supports a dif-
ferent range of musical CSPs, as detailed in the article. For a benchmark it would
be necessary to choose CSPs that are supported by each presented system, which is
only the case for CSPs where the music representation is a flat sequence of variables
(e.g., the all-interval series).19 Measuring the performance for such simple CSPs would
not be very interesting nor would this comparison be fair (e.g., more simple systems
could be advantaged, because the more complex music representation and search of
more expressive systems adds some overhead). Besides, measuring the performance
of a heuristic system such as OMClouds is problematic even for simple CSPs such
as the all-interval series. While the system arrives at an approximated solution very
quickly, it potentially never finds an exact all-interval series. It is difficult to formally
decide at what time the solution is good enough in order to terminate a performance
measurement (as OMClouds potentially never finds an exact solution, it does not stop
searching by itself). Further, some systems allow for various optimizations (e.g., Back-
Talk supports various search strategies, and one of the design goals of Strasheela
was even to make the search programmable by users). What optimizations would be
allowed for the benchmark? If arbitrary optimizations would be allowed, then for fair-
ness the benchmarked CSPs are best implemented by someone who intimately knows
the respective system (e.g., its authors). However, performance measurements have
only been published for few systems (e.g., Pachet and Roy [1995] and Anders [2007],
see also Section 6), and these publications only outline the CSP whose performance has
been measured: they do not provide the detail required to reproduce this CSP exactly
in other systems for a fair performance comparison.

5.2. Music Representation

The music representation format of a system greatly influences which musical CSPs it
can define, as has been shown before for the PWConstraint system (Section 4.1.2). This
section compares the representations of generic music constraint systems by looking
at three criteria: which information is explicitly represented, which score contexts can
be accessed from this explicit information, and which subset of the explicit information
is constrainable.

5.2.1. Explicitly Represented Information. All systems provide some composite data struc-
ture that expresses the explicitly represented score information. For example, musical
concepts such as individual parameters (e.g., durations, pitches), elementary score ob-
jects (e.g., notes, rests), or compound score objects (e.g., chords, motifs) are represented
by objects20 in this data structure. In all systems discussed here, solutions are ex-
pressed directly in this format instead of being somehow encoded. Consequently, each
system is limited to those CSPs for which solutions can be expressed by the music
representation of this system.

Table IV compares the data structure formats. Many systems are highly extend-
able. Therefore, instead of looking at simple notions such as “which note parameters
are supported by system X?” this table compares structural properties of these data
structures. The table reports whether or not representations support objects to have

19In principle, PMC and OMClouds allow for composite data as variable domains, which could be used to
express a hierarchic music representation (e.g., a homophonic chord sequence). However, the search then
partly amounts to an inefficient generate-and-test, because values nested in a composite domain value are
not tested individually.
20This term is used in this section in a general meaning and does not necessarily denote objects in an
object-oriented programming sense.
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Table IV. Comparison of the Music Representation Format of Different Systems: How Can Information be Ex-
pressed Explicitly? The Information Represented by Variables is Compared Separately Below

Attributes Score Topology Type
PMC none flat sequence uniform
Score-PMC predefined tree (fixed nesting) predefined
Situation user defined flat sequence uniform
MusES with BackTalk user definable one or more temporal collectionsd user definable, hierarchical
OMClouds none flat sequence uniform
Strasheela user definable user definede user definable, hierarchical

dEach container (TemporalCollection) stores temporal objects (e.g., notes, chords) sorted by their start time
and duration, i.e. no explicit non-temporal order is represented.
eMultiple topologies supported (e.g., nested event lists, tree of generic temporal containers, acyclic graph of
arbitrary containers).

attributes, a type, and how objects are arranged (the score topology). For example, the
music representation of PMC is a flat list of values. By contrast, the representation
of Score-PMC consists of various score object types such as notes, chords, parts, etc.,
for which a fixed set of features is defined, and which are arranged hierarchically in
a predefined way. Note that the table distinguishes between “user defined” and “user
definable”: in the latter case, users can either use predefined settings or define their
own.

Hierarchic nesting makes it possible to group score objects that somehow belong to-
gether (e.g., which notes form a motif, chord, or voice, which sections form a movement,
and so forth). CSPs which make use of such information require that this information
is represented. The attributes and the score topology both contribute to the hierarchic
nesting of a score, but both are listed separately, to make the table more easy to read.
Note that the score topology of many systems is a flat sequence, and thus grouping
cannot be expressed by the topology.21 In such systems it is difficult to model music
theories that rely on grouping information such as counterpoint (which relies on re-
lations between different parts), or musical form. MusES is unique in that it always
temporally sorts the elements of a collection, and that a CSP can consist of multiple
composite scores. Only Score-PMC and Strasheela allow for hierarchic nesting, and
Strasheela is the only system that supports an arbitrarily nested score.

When modeling theories it can be important to distinguish between different score
object types (e.g., notes versus rests, or chords versus scales). Type information can
be expressed either by a data type or simply by a type attribute, but objects with
different types can also differ in their attribute set. Several systems only allow for a
single type in a CSP (in Situation, users can control the set of object attributes, but all
objects uniformly share the same attribute set). MusES and Strasheela define a type
hierarchy by defining a class hierarchy in the object-oriented programming sense for
score objects: inheritance simplifies the definition of new types that share similarities
with existing types.

5.2.2. Accessible Score Contexts. This article introduced the term score context to denote
sets of related score objects. Music theories often constrain complex score contexts, as
has been shown before (Section 4.1.2).

A score context can be constrained directly, but it is often also used for accessing de-
rived information. For example, most representations store only note pitches explicitly,
but melodic intervals between two pitches can be derived if consecutive note pairs in a
voice are accessible.

21In principle, it is also possible to express grouping by special attributes (e.g., a note parameter that
indicates its part), but such an approach makes it hard to add further information on higher-level objects
(e.g., the part itself) or to introduce further hierarchic levels.
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Table V. System Comparison: Which Score Contexts (i.e., sets of related score objects) are Accessible in the
Music Representation?

Accessible Score Contexts
PMC positionally related values (only via constraint application mechanism)
Score-PMC a fixed set of predefined contexts (melodic, harmonic and metric context)
Situation positionally related objects (only via constraint application mechanism), and

their attributesf

MusES with BackTalk any set of temporally related score objects, and their attributes
OMClouds positionally related values (only via constraint application mechanism)
Strasheela any set of score objects, and their attributes

f The attributes of Situation objects include explicitly represented distances between attributes (see Sec-
tion 4.2.1).

Table VI. System Comparison: Which Information in the Music Representation can be Ex-
pressed by Variables and Is Thus Constrainable?

Variable Occurrence Variable Domain
PMC element in sequence universal
Score-PMC note pitch (key-number) integer
Situation attribute of object in sequence numberg

MusES with BackTalk anywhere universal
OMClouds element in sequence integer
Strasheela any value suiting the variable’s domainh specific domainsi

gA domain consists, for example, of integers, floats, or ratios (possibly mixed). Alterna-
tively, Situation supports variables of universal domains. However, choosing this option
simplifies the music representation into a flat list and disables constraint propagation.
hFor example, constrained variables can occur as attributes of score objects or locally in
constraints.
iIn principle, universal domains are possible. However, constraint propagation is only
supported for specific domains (e.g., finite domain integers, and finite sets). The set of
supported domains can be extended (requires low-level programming in C++).

Table V lists the accessible score contexts of each system. Naturally, the accessible
score contexts depend on the music representation format just discussed: if the score
topology is a flat sequence, then only positionally related objects are accessible (e.g.,
pairs of consecutive objects). However, some systems further restrict the accessible
score contexts. In several systems score contexts are only accessible via the constraint
application mechanism, and the mechanisms of PWConstraints and OMClouds are
not fully generic (Section 4.1.3 and 4.4.3). Also, note that for efficiency reasons only
temporally related contexts are supported by MusES. For example, the melodic context
of consecutive notes is difficult to access from a temporal collection where notes can
also occur simultaneously (Section 4.3.1). Only Strasheela supports accessing arbitrary
score contexts.

5.2.3. Constrainable Information. So far, we discussed the nature of the information that
can be expressed by the representation scheme of the different systems. Table VI details
where variables can occur in these representations, that is which pieces of information
can be constrained.

Obviously, variables can only occur within the boundaries of the music representation
format of each system. For instance, the music representation of PMC is a flat sequence
of values, and these values can be variables. However, not every score object can always
be substituted by a variable. For example, only note pitches but no rhythmic parameters
can be variables in Score-PMC for efficiency reasons: Score-PMC requires a determined
rhythmical structure for computing its static variable ordering before the search starts
(Section 4.1.4).

Systems differ not only in where variables are supported, but also in the supported
variable domains. The supported domains depend on the search strategy (Section 5.1).
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Table VII. System Comparison: How are Constraints Applied to the Score?

Constraint Application Mechanism
PMC pattern matching language for sequence
Score-PMC extended pattern matching language for hierarchic score
Situation multiple index-based mini-languages
MusES with BackTalk arbitrary control structures (e.g., loops)
OMClouds uniform for-all constraint application
Strasheela arbitrary control structures, convenient higher-order procedures

Systems that use chronological backtracking (PMC and Score-PMC) can in principle
support a universal domain, which consists of arbitrary values. In Score-PMC, how-
ever, note pitches must have an integer domain (MIDI note numbers). The solution
integer pitches are automatically inserted as 12-tone equal temperament pitches in
the score editor of its host system, and microtonal music is therefore not supported by
Score-PMC.22 BackTalk uses generic arc-consistency enforcing algorithms and there-
fore also supports variables with universal domain. Systems that use domain-specific
propagation algorithms for efficiency (Situation and Strasheela) support only those
variable domains for which propagation has been implemented.

Note that some information is not constrainable in any of these systems. In particular,
the score topology is fixed before the search, and the type of score objects cannot be
constrained.

5.3. Constraint Application

Existing systems differ widely in the means provided for applying constraints to the
variables in the music representation (Table VII). PWConstraints, Situation, and
OMClouds provide special mini-languages to this end. These are convenient for many
cases, but less suitable for others (Section 4.1.3 and 4.2.2). The application mechanism
of OMClouds is particularly limiting: basically, all variables are constrained in a
homogeneous way (Section 4.4.3).

By contrast, MusES with BackTalk and Strasheela allow for directly accessing the
variables in the music representation. Arbitrary control structures can be used in
these systems for applying constraints to these variables. While MusES with BackTalk
uses common control structures such as loops, Strasheela also provides a collection of
convenient higher-order procedures for various purposes (e.g., some procedures model
mini-languages of PWConstraints and Situation).

5.4. Usability

There are two important design goals for a music constraint system. On the one hand,
designers aim at making their systems suitable for a wide range of composition prob-
lems. The history of Situation exemplifies this goal: in the beginning the system sup-
ported only harmonic CSPs, and it was later generalized to support rhythmic CSPs as
well. On the other hand, systems should of course be easy to use.

These two design goals are contradictory to a certain degree. Users of music con-
straint systems include composers and music theorists (often with little programming
experience) besides computer scientists or mathematicians. When defining musical
CSPs, these users always write computer programs. Making musical constraint
systems easy to use can therefore mean making computer programming more easy for
nonprogrammers.

22The only system with explicit support for microtonal music is Strasheela: Strasheela’s export formats and
predefined constraints take microtonal pitches in various representations into account, and there are many
microtonal Strasheela examples available.

ACM Computing Surveys, Vol. 43, No. 4, Article 30, Publication date: October 2011.



CSUR4304-30 ACM-TRANSACTION September 16, 2011 21:2

30:32 T. Anders and E. R. Miranda

Table VIII. System Comparison: Programming Language Syntax for CSP Definitions and Program-
ming Environment

Syntax Environment
PMC visual & textual CAC system PatchWork, now PWGL
Score-PMC visual & textual CAC system PatchWork, now PWGL
Situation visual & textual CAC system PatchWork, now OpenMusic
MusES with BackTalk textual SmallTalk programming environment
OMClouds purely visual CAC system OpenMusic
Strasheela textual Oz programming environment

Visual programming languages have been very successful in making programming
more accessible to nonprogrammers in the field of computer music in general.
Nevertheless, while visual programming languages simplify the programming syntax,
they cannot substitute the computer science concepts on which the generality of music
constraint systems is founded. More generic systems tend to apply computer science
concepts which are more advanced for nonprogrammers. For example, Strasheela’s
constraint application mechanism is more generic than PMC’s mechanism, but
its underlying concept (higher-order programming) is also more abstract than the
pattern-matching mechanism of PMC. While any computer science concept can be
integrated into a visual language in principle (e.g., OpenMusic supports higher-order
programming), users must understand these concepts in order to employ them
successfully. Visual programming is thus no magic bullet for making programming
more easy: computer science concepts per se are not more easy to comprehend in a
visual than a textual language.

Existing systems typically lean towards only one of these two design goals
(Table VIII). OMClouds is the most easy to use among the existing systems. It provides
a purely visual programming language. Further, due to its purely heuristic search
CSPs are more easy to define: users cannot define overconstrained problems. At the
same time, OMClouds is also most restricted in the range of CSPs supported, as has
been shown earlier. MusES with BackTalk and Strasheela lean towards the other
design goal. These systems are particularly expressive, as has been shown before.
However, these systems have been designed for experienced programmers. PWCon-
straints and Situation are situated more in the middle in this respect. A superficial
indication is their syntax, which combines visual and textual programming. Whereas
MusES with BackTalk and Strasheela are real programming systems, PWConstraints
and Situation quasi provide CSP templates where the user can change many settings
but never change the overall structure of the program. This approach makes these
systems less expressive than MusES with BackTalk or Strasheela, but at the same
time it simplifies their use.

Besides the ease of the CSP definition, other factors also contribute to the usability.
An important aspect is the programming environment into which the music constraint
system is embedded. For example, many systems are integrated in Computer-Aided
composition (CAC) systems such as PWGL or OpenMusic, which also provide libraries
for other algorithmic composition techniques, and where expressive score editors are
available (Table VIII). By contrast, MusES with BackTalk and Strasheela are build
directly on top of general-purpose programming languages.

Also seemingly minor points can have a decided impact on the usability. For example,
in case of an overconstrained problem with no solution, systems supporting propagation
(e.g., Strasheela) often immediately report that there is no solution, while backtracking-
based systems may instead search for a very long time. Debugging CSPs is difficult in
every system, but some systems (e.g., PWConstraints) can provide feedback on which
constraints caused failure.
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6. CONCLUSION

Constraint Programming (CP) is a highly suitable paradigm for computationally mod-
eling music theories and composition. The CP paradigm has been used for several
decades in this field, and many music theory subdisciplines have been addressed in-
cluding counterpoint, harmony, rhythm, and instrumentation (Section 3).

Nevertheless, many complex aspects of music theory and composition still await
constraint-based modeling. In particular, more research on the modeling of instrumen-
tation and orchestration is required. Other neglected fields include harmonic counter-
point, and the modeling of melody and musical form.

While music theories are often modeled “from scratch” using CP, generic music
constraint systems have been developed for more than a decade (Sections 4 and
5). These systems predefine important building blocks shared by many musical
Constraint Satisfaction Problems (CSP) and that way greatly simplify their definition.
In doing so they make music CP accessible for a larger audience. Each of these systems
has a similar structure: it implements a music representation, defines mechanisms
to define and apply constraints to variables in the music representation, and pro-
vides a constraint solver. However, the systems differ in the actual design of these
components.

As a result, generic music constraint systems differ greatly in the range of music
theories they support. For example, few systems support contrapuntal CSPs, as
such problems require a more expressive music representation. The two systems
MusES with BackTalk (Section 4.3) and Strasheela (Section 4.5) are particularly
expressive: they are suitable for highly complex music theories such as a fully-fledged
theory of harmony or counterpoint. Important for this expressivity is that these
systems effectively provide software libraries: users have great freedom in arranging
the components provided, and these systems are also highly extendable. However,
these systems are designed for experienced programmers. OMClouds (Section 4.4) is
the exact opposite in terms of expressivity and usability. The range of music theories
supported is the smallest among the five systems reviewed, while at the same time
OMClouds is the most easy-to-use system. Its visual language and its purely heuristic
search, which prevents overconstrained problems, makes OMClouds best suited
for users without prior programming experience. The two systems PWConstraints
(Section 4.1) and Situation (Section 4.2) are situated between these two extremes.
These systems define CSP templates that restrict the range of theories supported.
Nevertheless, the template of a system like PWConstraints’ subsystem Score-PMC
still allows for a wide range of complex contrapuntal CSPs.

For the practical use, an important concern is the speed at which musical CSPs can be
solved. Simple problems (e.g., an all-interval series or first-species Fuxian counterpoint)
are solved in a couple of milliseconds [Anders 2007]. More complex problems such as the
harmonization of a melody or two-voice florid counterpoint take a few seconds [Pachet
and Roy 1995; Anders 2007]. However, musical CSPs can be extremely complex, and
finding a solution for a complex problem can take a long time. An efficient search
strategy is highly problem-dependent, and the more generic systems therefore provide
extensive control over the search process (Sections 5.1). However, such optimizations
are again best done by an experienced programmer.

In general, systems that support a greater range of music theories and more complex
theories tend to be harder to use, because they require more programming experience
from their users. Yet, potential users such as composers and music theorists—who
could greatly contribute to this field—are often not trained as programmers. For future
research, it would be interesting to make the expressive power available in music CP
today more accessible for this audience.
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Some recent research developments on CP in general would be highly useful for
music CP, but have not been adopted in existing system so far. For example, no system
supports that the hierarchic structure of the score can be constrained freely, but such
a feature would be highly useful for modeling musical form. Variables with graph
domain [Dooms et al. 2005] might be a suitable approach for this. Soft constraints are
particularly important for music. Existing systems that are based on hard constraints
model soft constraints using various techniques (Section 5.1). Support for true soft
constraints [Bistarelli 2004] that can be combined with hard constraints would be
beneficial. Finally, music CP is computationally expensive because the search space
can be huge. So far, the performance of systems was quasi automatically improved over
time because each new generation of CPUs ran on a higher clock rate than the previous
generation. This development has meanwhile slowed down. Future constraint systems
will improve their performance by using multiple processors in parallel with parallel
search [Schulte 2002].
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grating constraints and concurrent objects in musical applications: A calculus and its visual language.
Constraints 6, 1, 21–52.

RUEDA, C., LINDBERG, M., LAURSON, M., BLOCK, G., AND ASSAYAG, G. 1998. Integrating constraint programming in
visual musical composition languages. In Proceedings of the Workshop on Constraints for Artistic Appli-
cations (ECAI’98). http://www.cs.vu.nl/∼eliens/poosd/@online/@share/archive/ecai98/rueda.ps (accessed
1/10).

RUEDA, C., TAMURA, G., AND QUESADA, L. O. 1997. The visual model of cordial. In Proceedings of the
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